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ABSTRACT: Support vector machines (SVMs) are powerful classifiers for large tasks as image/video-sequence analysis. 

A practical implementation issue for such problems is their real time operation in the classification phase. One recent 

strategy is the development of algorithmic formulation of SVMs suitable for hardware implementation. We propose such 

an approach, that allows a partially sequential – partially parallel implementation of the SVM classification, through the 

description of the feature vectors as time-continuous signals. This allows a simple analog implementation of the dot 

product between each test and support vector in a sequential fashion and a parallel computation of all the dot products 

for a test vector. The functionality of the algorithm is validated through a Simulink model and a set of experiments on 

the IRIS dataset. The solution will offer a good speed-complexity compromise in SVM classification implementation. 

INTRODUCTION 
 

Support vector machines (SVMs) represent a powerful 

machine learning technique that gained recently a great 

interest from the scientific community, especially due to 

their performance in solving difficult classification and 

pattern recognition tasks. One of the most noticeable 

application fields where SVM classifiers proved their 

very good performance is image analysis. Several 

applications are recently reported in face detection, 

object tracking in video-sequences, face recognition, 

facial feature localization etc. [1,2]. These are difficult 

recognition tasks, due to the variability of the 

appearance of the same pattern and to the difficulty of 

defining and extracting reliable features to describe the 

patterns, so that to maximize the inter-class and 

minimize the intra-class variance. SVM classifiers prove 

able to learn from small sets of (often sparse) examples, 

without the need of a carefully selected feature 

extraction strategy, with very small recognition error and 

high generalization performance.  

In its basic form, an SVM is a binary classifier based on 

the optimal separating hyperplane algorithm that 

implements the Structural Risk Minimisation principle. 

In its training phase, the SVM receives at its input a set 

of labelled training patterns in the form {xi,yi}, 

i=1,2,...,Ntrn,  where xi is a vector of N real-valued 

features, N
i ℜ∈x , and yi is its label, }1;1{y i +−∈ ; a 

value +1 is assigned to a positive example for the 

classifier, whereas –1 is assigned to a negative example. 

Based on the training set the SVM learning algorithm 

derives the so-called optimal separating hyperplane. 

This will (ideally) perfectly separate the positive from 

the negative examples, ensuring a maximal distance 

between the closest positive and the closest negative 

example to the hyperplane [3]. The training patterns xs, 

s=1,2,...,Ns, Ns<<Ntrn, that are the closest positive and 

closest negative to the hyperplane are called the support 

vectors of the SVM classifier. The support vectors, 

together with their associated positive Lagrange 

multipliers αs and with their labels ys, completely define 

the decision function of the SVM classifier, in the form:   
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where x denotes an unlabeled pattern to be classified by 

the trained SVM, 
N

ℜ∈x ; b represents the bias term of 

the hyperplane; ( )⋅⋅,K  represents a kernel function used 

to compute the dot product between x and xs, either in 

their original space 
N

ℜ  (for a linear SVM) or in a 

higher dimensional feature space 
M

ℜ , M>>N, where 

the data are projected to become linearly separable (for 

non-linear SVMs) [3]. Typical forms of kernels are: 

a) For the linear SVM: 
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b) For a non-linear SVM: the polynomial kernel of 

degree d, with ℜ∈ℜ∈ q,p - coefficients: 
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The number of the support vectors Ns increases with the 

complexity of the classification task. Furthermore, 

difficult classification problems are in general associated 

to a large dimensionality of the pattern space, i.e. N – 

large. Therefore the more difficult the classification 

problem, the larger the computational complexity of the 

SVM classification process, both in the training phase 

[4] and in the classification phase [5]. Although a great 

effort was devoted to find efficient computational 

implementations both for the training phase (in which 

the tractability of the optimisation process leading to the 

SVM classifier is the most important issue) and for the 

test phase (where the problem is the real-time evaluation 

of f(x)), in this paper we address only the latter aspect of 



the problem. Reducing the numerical complexity of the 

classification phase is extremely important for 

applications that must run in real-time, as e.g. video-

sequence analysis [2], therefore this topic is of actual 

interest for the scientific community.  

The computational complexity of the classification 

phase can be evaluated in terms of the number of 

elementary operations needed for the evaluation of f(x) 

in every unlabeled pattern x. Examining the equations 

(1), (2) and (3), one can see that each evaluation 

requires Ns dot product computations in the form x
T
xs , 

s=1,2,...,Ns, followed by Ns kernel evaluations for every 

x
T
xs, Ns multiplies with the constant ysαs and Ns-1 

additions. The dot product is expressed as: 
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[ ]TN21 x...xx=x ; [ ]TsN2s1ss x...xx=x . 

Thus to evaluate every x
T
xs one needs N multiplies and 

N-1 additions, which leads to a total of approximately 

2N⋅Ns operations per pattern classification. Furthermore, 

considering that many image analysis tasks decompose 

the image into a set of P patterns (partially overlapping 

image windows), the number of operations needed for 

the complete classification increases P times, to 2P⋅N⋅Ns 

[1,2]. Therefore, speeding-up the classification phase 

becomes a non-trivial task for real-world applications of 

SVM classifiers. The types of solutions reported in the 

literature depend of the type of implementation:  

1) Solutions devoted to software implementations of 

SVM classifiers. In this case, the computational time can 

be decreased only by reducing the number of support 

vectors Ns or the dimension of the feature space N since 

all the computations are performed sequentially. Ns can 

be minimised by selecting only the most significant 

support vectors [5]. To reduce the feature space 

dimension N, various data compression techniques can 

be used as e.g. principal component analysis [6].  

2) Solutions achieved by the hardware implementation 

of SVM classifiers. In this case, the duration of the 

classification phase is reduced by parallelising to the 

largest possible extent the computation of f(x). Analog 

implementations are recently reported in the literature 

[7]. It is easy to see from equation (1) that all the 

evaluations of the kernel function K(x,xs), s=1,2,...,Ns, 

and the N feature-by-feature multiplies from the 

computation of x
T
xs can be performed in parallel. This 

leads to massively parallel circuit structures.  

However, as the parallelism increases, the circuit level 

complexity of the SVM classifier increases as well. A 

massively increased complexity resulting for a large-

scale classification problem might be unpractical for 

certain applications. A compromise solution would be a 

partially sequential – partially parallel operation, lying 

somewhere between the software and the hardware 

implementation; this could provide a good trade-off 

between the duration of the classification phase and the 

hardware complexity, thus being also more suitable for 

large-scale problems. Such a solution is proposed in this 

paper. The proposed approach is the implementation of 

each dot product x
T
xs, s=1,2,...,Ns, in a sequential analog 

fashion, whereas the Ns dot product computations (and 

of course kernel evaluations) will be done in parallel. A 

number of Ns parallel analog circuit structures will be 

needed for the evaluation of f(x). The computation of 

x
T
xs in the analog sequential way is achieved by 

providing time-continuous descriptions of the pattern x 

and support vectors xs, using signal reconstruction 

techniques from their samples. With the time-continuous 

formulation of x and xs as analog signals x(t) and xs(t), 

the computation of x
T
xs can be formulated as an analog 

signal multiplication followed by a signal integration; 

these operations can be implemented with simple analog 

structures.  

In this paper we prove, through a mathematical 

demonstration, a Simulink model implementation and 

through a set of experimental results performed with the 

implemented Simulink model on a standard set for data 

classification, the validity of the proposed algorithm. Its 

circuit level implementation is currently an issue of our 

ongoing research work in the field. 

 

TIME-CONTINUOUS FORMULATION 

OF THE CLASSIFICATION PHASE 
 

The motivation for the proposed time-continuous 

formulation of the SVM classification phase originates 

from a typical application of SVM classifiers: the 

classification of grey-level images based on their content 

[1]. In the simplest implementation, the feature vector 

for such a task is obtained by scanning the grey-level 

digital image in row order. Thus every pattern x is just 

an ordered collection of grey levels, as illustrated in 

Figure 1a). However, one could consider not the digital 

image representation, but the analog image 

representation as in classical television applications. The 

analog version of the image can be represented as a 

sequence of time-continuos signals corresponding to 

each scan line as in Figure 1b). The digital image is the 

sampled and quantized version of the analog signal. 

Thus x can also be represented as the sampled and 

quantized version of the analog image, as in Figure 1c).  

 

 
Fig. 1. Image description: a) as a digital image and in vector 

form; b) in analog form (one scan line); c) alternate 

representation as a sampled and quantized signal 

 

Let us denote the description of the pattern x as a 

sampled signal by X(t). 

In analytical form, the sampled signal X(t) can be 

expressed as follows: 
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In equation (5), by fS we denote the sampling frequency 

of the original analog signal from Figure 1b) to get the 

sampled signal in Figure 1c). Of course every support 

vector xs can be expressed just in the same fashion by a 

corresponding sampled signal Xs(t), s=1,2,...,Ns.  

We can consider that the (for this case, available) analog 

versions of the images representing the pattern x and the 

support vectors xs, namely the time-continuous signals 

denoted by x(t) and xs(t), are just more complete 

versions of the sampled signals X(t) and Xs(t). Then if 

we can express the decision function f(x) of the SVM 

classifier given by the equation (1) in respect to x(t) and 

xs(t), s=1,2,...,Ns, we will obtain a time-continuous 

formulation of the SVM classification phase. For the 

time being, we will consider in equation (1) the use of 

the linear kernel or polynomial kernel, as in these 

functions x and xs appear only in the form of their dot 

product, x
T
xs. Actually this is the only term that needs to 

be expressed in a time-continuous fashion, according to 

our implementation goal formulated in the previous 

section.  

Describing x and xs as the sampled signals X(t) and 

Xs(t), x
T
xs given by equation (4) can be expressed as: 
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which furthermore, neglecting the effect of quantization, 

can be expressed in terms of the analog time-continuous 

signals x(t) and xs(t) as: 
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Equation (7) can be written in continuous form as: 
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which gives the basic of the time-continuous formulation 

of the SVM classification proposed. 

Although this time-continuous formulation was initiated 

considering an image classification application, it can be 

extended to any types of patterns x, regardless if their 

features are of the same kind, as long as they are real 

valued. However in the latter case, no time-continuous 

analog version of x and xs, s=1,2,...,Ns, was ever 

available. Therefore signal reconstruction methods as 

e.g. generation of quantized but not sampled signals or 

interpolation techniques must be applied to get analog 

versions of the patterns. In practice, depending on the 

reconstruction method, one might get as the result of the 

integration a larger value than x
T
xs. However as long as 

the result is proportional to the dot product by a known 

constant factor, this is not a problem for the 

computation.  

With this formulation, the SVM classification phase can 

be implemented using the equations (8), (1) and 

(depending on the type of SVM) (2) or (3), as follows: 

1) A sequential computation of each dot product x
T
xs, 

s=1,2,...,Ns using an analog multiplier block that has at 

its inputs the signals x(t) and xs(t), followed by an 

analog integrator whose output is read at the moment 

N/fS after the integration start and multiplied by the 

constant αsys. This is illustrated in Figure 2 which is the 

detailed description of the blocks “Weighted sum” from 

Figure 3. 

2) Parallel computations of all the dot products x
T
xs 

for the Ns support vectors. This process requires a 

number of Ns structures as the one given in Figure 2. For 

a linear SVM, the Ns scalar outputs simply enter a 

summation block along with the bias term b. For a non-

linear SVM with polynomial kernel, every scalar output 

x
T
xs is first processed according to equation (3) prior to 

summation.  

Usually the number of support vectors Ns is much 

smaller than the length of the feature vector N (in 

practical applications – at least by a factor of 10). 

Therefore the circuit complexity (defined as the number 

of simple analog building blocks needed for the 

implementation) is much smaller than in the massively 

parallel structures, which makes the approach suitable 

even for large scale SVM classification problems. On 

the other hand the computational speed, although lower 

than in the case of a fully parallel system, is higher than 

in the case of a fully sequential system. 

 

 
Fig. 2. Block diagram illustrating the sequential analog 

implementation of the dot product xTxs  

 

The last issue to complete the proposed formulation of 

the SVM classification phase is the generation of the 

time-continuous signals x(t) and xs(t) through signal 

reconstruction techniques, from their sampled versions 

X(t) and Xs(t), s=1,2,...,Ns. 

Two issues should be mentioned here: 

1) Assuming the same sampling frequency fS for X(t) 

and for any Xs(t), any pair of sampled signals in the 

form (X(t), Xs(t)) will ideally be perfectly synchronised. 

However in practice this case will never hold. Thus if 

one wants to use directly the sampled signals as inputs in 

the computational block given in Figure 2, if any time 

delay between X(t) and Xs(t) appears, a large error will 

appear in the resulting dot product.  

2) In the general case when x and xs do not originate 

from analog, time-continuous signals, a value fS→∞ 

(corresponding to the ideal sampling) will not be as 

beneficial as for analog signals. On the contrary, the 

time-continuous signal multiplication will be again 

prone to errors, as in the first case considered here, for 

any time delay between the 2 signals.  

In order to avoid these problems, one needs to provide 

suitable reconstructed waveforms x(t) and xs(t) so that, 

even in the presence of a time delay τd, the dot product 

to be computed with a very small error. Two simple 

solutions to produce signals x(t) and xs(t) that satisfy this 

condition are given in the following: 

1) The most simple solution is to consider x(t) and 

xs(t) in the form of some quantized but not sampled 

signals. In this case, “the restoration” of the time-

X 
X ∫  

   

x(t) 

xs(t) 

αsys 

sxTx ⋅  



continuous signals is achieved by repeating, on each 

time interval [tk;tk+1), tk=k/fS, k=0,1,...,N-1, the 

corresponding sample (feature) value, namely, xk+1 for 

x(t) and xs,k+1 for xs(t). Thus x(t) and xs(t) will have the 

following expressions: 

 1N,...,1,0k),t;t[tforx)t(x 1kk1k −=∀∈= ++  (9a) 

 1N,...,1,0k),t;t[tforx)t(x 1kk1k,ss −=∀∈= ++  (9b) 

The resulting signals x(t) and xs(t) for some 

{ }sN,...,2,1s ∈ are illustrated in Figure 5 of the 

Experimental results section, for a particular example 

with Ns=2 and N=4 (the plots denoted XTest and SV1 

on Scope 1). They can be considered periodical square 

wave signals, with the period N/fS.  

Thus, in the ideal case of no time delay between x(t) and 

xs(t), at the output of the integrator from Figure 2 we 

will have at the moment N/fS after the start of the 

integration, the numerical value: 
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that is proportional to the dot product by a factor of 1/fS. 

If fS=1, equation (10) gives exactly the dot product x
T
xs.  

2)  Another simple solution would be to generate the 

time-continuous signals x(t) and xs(t), s=1,2,...,Ns, from 

their discrete samples by interpolation. The most simple 

procedure is the linear interpolation. The advantage of 

such an approach in the generation of x(t) and xs(t) is 

that the signals will not have any local discontinuities. 

However when x(t) and xs(t) are piecewise linear, their 

product on each time interval [tk;tk+1) will be a 2
nd

 

degree polynomial, thus its integral will no longer be 

proportional to the dot product x
T
xs by a constant factor. 

Therefore better interpolation methods should be found 

to generate x(t) and xs(t). The investigation of such 

methods will make the object of our future work. 

 

A SIMULINK MODEL OF THE TIME-

CONTINUOUS SVM CLASSIFIER 
 

The model of the time-continuous implementation of the 

classification phase using SVM is shown in Figure 3. 

This is a general bloc diagram that can be used for any 

number of support vectors Ns. In this model, we describe 

each support vector by the pair (xs,ys). The support 

vectors, their corresponding Lagrange multipliers αs, 

s=1,2,...,Ns, and the bias term of the hyperplane b are 

previously detected in the training phase of the support 

vector machine. Our implementation of the classification 

phase is independent of the training method (i.e. 

software or hardware).  

The signals entering the classification phase are: 

• The support vectors, denoted as Support Vector s, 

s=1,…Ns, each vector being described by its 

corresponding time-continuous signal xs(t) and its label 

ys (as a time constant). 

• The Lagrange multipliers αs, denoted by alpha s, 

s=1,2,...,Ns, as time constants. 

• The pattern to be classified x, denoted by Xtest, 

described in the time-continuous fashion as x(t) given in 

the previous section.  

• The bias term b, denoted as Bias, as a time constant. 

 

 
Fig. 3. Block diagram of the time-continuous SVM classifier  

 

The number of the computational blocks “Weighted sum 

s” equals the number of support vectors, to compute the 

weighted sum of the corresponding support vector and 

Xtest vector. The resulting time continuous signal from 

these blocks, WSigma s, are added together with the 

bias term, Bias, by the Sum block. The result is the 

signal f(Xtest), that gives the evolution of the decision 

function of the classifier evaluated in Xtest as a time-

continuous signal. It worth to mention that the 

intermediate values of f(Xtest) show the effect of each 

individual feature on the decision function. This is a 

specific characteristic of our implementation as 

compared to other implementations.  Anyway the final 

value of the decision function will be read as the value 

of f(Xtest) at the moment N/fS, as described in the 

previous section. The final classification result, i.e. the 

Label, is provided by the Zero threshold comparator 

block, as +1 if f(Xtest)>0, and -1 if f(Xtest)<0. 

To verify the operation of the designed analog SVM 

classifier, we implemented it in Simulink, under Matlab 

environment. To keep the implementation simple, in 

order to observe the full behavior of the classifier, we 

chose a classifier with two support vectors. The detailed 

Simulink model is presented in Figure 4. As one can see 

the Simulink model has two computation channels, the 

first one corresponds to the first support vector (upper 

part) and the second one corresponds to the second 

support vector (lower part). 

First of all we generate the continuous time signals 

corresponding to the features of all involved vectors:  

- Xtest signal for test vector, using the block TestVect; 

- SV1 signal for first support vector, using the block 

SupVect1; 

- SV2 signal for second support vector, using the block 

SupVect2. 

An example of these time-continuous signals can be 

seen in the experimental results section, in Figure 5.  

 



These signals are collected with Scope1, Scope2 and 

Scope in the Simulink model. In our model we 

considered a duration of 1s for each feature of the input 

vector. The Product11 and Product21 blocks are 

responsible for the multiplication of the test vector (the 

signal Xtest) with the first support vector (the signal 

SV1) and with the second support vector (the signal 

SV2), thus producing the time-continuous signals 

Xtest*SV1, Xtest*SV1. The integration of each product 

signal by the blocks Integrator1 and Integrator2 gives 

the cumulated sum corresponding to the dot product. 

The resulting signals are Sigma1 and Sigma2, that are 

further multiplied by the corresponding Lagrange 

multiplier and the support vector’s label. The resulting 

weighted signals are WSigma1 and WSigma2. Finally, 

from these “partial” signals, the decision function 

f(Xtest) is obtained according to the equation (1) 

applied for a linear SVM, using a summation block with 

three inputs: WSigma1, WSigma2 and Bias. 

The signal f(Xtest) on the Scope represents the 

evolution in time of the decision function of the 

classifier. Although the classification result is given by 

the value of f(Xtest) only at the moment N/fS (in our 

case, t=4s), one can notice that the proposed 

implementation allows us for an even better observation 

of the SVM classification process, as follows. We can 

consider in our example four significant time moment: 3 

intermediate and one final. At t=1s, the decision 

function contains only the classification result according 

to the first feature and so on, up to t=4s, when we get the 

final value of the decision function we are interested in. 

Thus, in order to reduce the computation time, with a 

proper ordering of the features according to their 

significance, it yields possible to consider as final value 

of the decision function the value at an intermediate time 

moment, after taking into consideration only the most 

significant features.  

The label assignment to the unknown pattern Xtest to be 

classified is implemented by the Sign block, in the 

Simulink model. This block is a simple comparator 

having the zero value for its threshold. The value of the 

output signal of this block, Label, should be read et the 

moment t=4s, after all the vectors’ features were 

processed. 

The Simulink model can be very easy extended for any 

number of support vectors by simply replicating the 

computing channels and adding the necessary inputs to 

the summation block. 

Our implementation is also very useful from the 

didactical point of view. Due to the fact we have access 

and can see the signals in all the intermediate points of 

the computing flow, one can easy understand the 

operations involved in the classification phase of the 

SVM. Also, the verification of our future 

implementation ideas mentioned in the previous section 

is very easy with this model, due to its interactive mode 

of operation. 

 

EXPERIMENTAL RESULTS 
 

We tested our implementation on a standard data set for 

classification tasks, namely, the IRIS data [8]. Each 

pattern in the data set is described by 4 features of an 

iris flower: the petal length and width and the sepal 

length and width. There are 3 classes of irises: Setosa, 

Versicolor and Virginica. The goal is to classify each 

individual pattern in one of the 3 classes. We consider in 

our experiment the binary classification of an unknown 

pattern in the class Setosa vs. the other 2 classes. For the 

SVM training (needed to obtain the support vectors, 

their Lagrange multipliers and the bias term) we used 

Steve Gunn’s Matlab application [9]. The IRIS data set 

contains 75 training patterns.  The training is performed 

for a linear SVM with the error penalty parameter C=1. 

After the training phase we get 2 support vectors, whose 

features, labels and Lagrange multipliers are presented 

in Figure 4 and 5, along with the bias term of the 

resulting classifier.  

As test vectors, we selected 12 patterns from the 

standard IRIS test set to be classified using two 

implementation: Steve Gunn’s implementation 

(considered here as reference classifier, and denoted as  

SG) and our Simulink SVM classification 

implementation (denoted as SCT). The values of the 

decision function in the 2 implementations along with 

the “target” classification results are presented in Table 

1. Since the classification labels always match the target, 

we do not list them in the table, but only the target ones, 

denoted there as simply “Label”.   

As one can notice by examining the results in Table 1, 

the differences in the real value of the decision function 

(error column in Table 1) computed by SG 

implementation and our SCT implementation can be 

considered zero, since their order is 10e-7 for all the test 

vectors. So our SCT implementation always provides 

correct values, for various signs and magnitudes of the 

 decision function.  

The computational details in each step of the algorithm 

can be seen in Figure 5. This figure illustrates the 

waveforms for all the input, intermediate and output 

signals during the classification of the test vector 1 from 

Table 1. The signal Xtest is very similar with the signal 

SV1 but different from the signal SV2. This observation 

is very important, being a qualitative information about 

 

Fig. 4. The Simulink model of the time-continuous SVM 

classifier 



the membership of the test vector to the same class as 

support vector 1. The time variation of the decision 

function f(Xtest) is very important because it offers 

information about an intermediate membership of the 

test vector after taking into consideration only the firsts 

features of the test vector, after each time period. In 

accordance with the first feature  (time moment t =1s), 

f(Xtest)=0.364>0, label=+1, so the test vector belongs to 

the Setosa class. Also considering the first two featurs 

(t=2s), three features (t=3s), or all four features (t=4s) 

we have f(Xtest)>0, label=+1, so Setosa class. 

TABLE 1. Classification results 

f(Xtest) Xtest 

SG SCT error 

Label 

 

1. 0.8415397971  0.8415394766 -3.20e-07 1 

2. 0.9282835252  0.9282832184 -3.06e-07 1 

3. 0.7703558444  0.7703555818 -2.62e-07 1 

4. 0.9946513779  0.9946510561 -3.22e-07 1 

5. 1.2129277395   1.2129273884 -3.51e-07 1 

6. 1.7282735109  1.7282731483 -3.63e-07 1 

7. -4.5566642408   -4.5566646840 -4.43e-07 -1 

8. -1.2689215012  -1.2689217966 -2.95e-07 -1 

9. -2.3058037663 -2.3058041356 -3.69e-07 -1 

10. -2.2193649549 -2.2193653424 -3.87e-07 -1 

11. -1.3893638414 -1.3893641758 -3.34e-07 -1 

12. -3.3223390851 -3.3223394769 -3.91e-07 -1 

 

CONCLUSIONS 
 

In this paper we proposed a new algorithm for the 

implementation of the classification phase in SVM 

classifiers. The aim is a good compromise solution 

between the duration of the classification phase and its 

complexity in analog hardware implementation. The 

proposed algorithm is based on the description of the 

feature vector x and support vectors xs of the SVM as 

analog signals x(t) and respectively xs(t), which makes 

possible to describe the kernel evaluation in a simple 

analog signal processing fashion. The equivalence of the 

standard formulation and the proposed time-continuous 

formulation of the SVM classification phase is proven 

by building a Simulink model and by a set of 

experiments on the IRIS classification set. The graphical 

illustration of the result provided by the time-continuous 

representation of the signals is also useful to understand 

the SVM classification and to further reduce the 

computational time, providing an ordering of the 

features based on their significance can be found. In our 

future work we will implement the proposed solution 

with simple analog circuits and search interpolation 

methods to generate the continuous signals x(t) and xs(t).   
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