

TOWARDS ANALOG IMPLEMENTATION OF SUPPORT VECTOR

MACHINES: A TIME-CONTINUOUS FORMULATION OF THE

CLASSIFICATION PHASE

G. OLTEAN, M. GORDAN

TECHNICAL UNIVERSITY OF CLUJ-NAPOCA, ROMANIA

KEYWORDS: Support vector machine, Fast classification, Time-

continuous signal processing, Analog implementation

ABSTRACT: Support vector machines (SVMs) are powerful classifiers for large tasks as image/video-sequence analysis.

A practical implementation issue for such problems is their real time operation in the classification phase. One recent

strategy is the development of algorithmic formulation of SVMs suitable for hardware implementation. We propose such

an approach, that allows a partially sequential – partially parallel implementation of the SVM classification, through the

description of the feature vectors as time-continuous signals. This allows a simple analog implementation of the dot

product between each test and support vector in a sequential fashion and a parallel computation of all the dot products

for a test vector. The functionality of the algorithm is validated through a Simulink model and a set of experiments on

the IRIS dataset. The solution will offer a good speed-complexity compromise in SVM classification implementation.

INTRODUCTION

Support vector machines (SVMs) represent a powerful

machine learning technique that gained recently a great

interest from the scientific community, especially due to

their performance in solving difficult classification and

pattern recognition tasks. One of the most noticeable

application fields where SVM classifiers proved their

very good performance is image analysis. Several

applications are recently reported in face detection,

object tracking in video-sequences, face recognition,

facial feature localization etc. [1,2]. These are difficult

recognition tasks, due to the variability of the

appearance of the same pattern and to the difficulty of

defining and extracting reliable features to describe the

patterns, so that to maximize the inter-class and

minimize the intra-class variance. SVM classifiers prove

able to learn from small sets of (often sparse) examples,

without the need of a carefully selected feature

extraction strategy, with very small recognition error and

high generalization performance.

In its basic form, an SVM is a binary classifier based on

the optimal separating hyperplane algorithm that

implements the Structural Risk Minimisation principle.

In its training phase, the SVM receives at its input a set

of labelled training patterns in the form {xi,yi},

i=1,2,...,Ntrn, where xi is a vector of N real-valued

features, N
i ℜ∈x , and yi is its label, }1;1{y i +−∈ ; a

value +1 is assigned to a positive example for the

classifier, whereas –1 is assigned to a negative example.

Based on the training set the SVM learning algorithm

derives the so-called optimal separating hyperplane.

This will (ideally) perfectly separate the positive from

the negative examples, ensuring a maximal distance

between the closest positive and the closest negative

example to the hyperplane [3]. The training patterns xs,

s=1,2,...,Ns, Ns<<Ntrn, that are the closest positive and

closest negative to the hyperplane are called the support

vectors of the SVM classifier. The support vectors,

together with their associated positive Lagrange

multipliers αs and with their labels ys, completely define

the decision function of the SVM classifier, in the form:

 b),(Ky)(f
sN

1s
sss +∑α=

=

xxx , (1)

where x denotes an unlabeled pattern to be classified by

the trained SVM,
N

ℜ∈x ; b represents the bias term of

the hyperplane; ()⋅⋅,K represents a kernel function used

to compute the dot product between x and xs, either in

their original space
N

ℜ (for a linear SVM) or in a

higher dimensional feature space
M

ℜ , M>>N, where

the data are projected to become linearly separable (for

non-linear SVMs) [3]. Typical forms of kernels are:

a) For the linear SVM:

 s
T

ss),(K xxxxxx =⋅= (2)

b) For a non-linear SVM: the polynomial kernel of

degree d, with ℜ∈ℜ∈ q,p - coefficients:

 ()ds
T

s qp),(K +⋅= xxxx (3)

The number of the support vectors Ns increases with the

complexity of the classification task. Furthermore,

difficult classification problems are in general associated

to a large dimensionality of the pattern space, i.e. N –

large. Therefore the more difficult the classification

problem, the larger the computational complexity of the

SVM classification process, both in the training phase

[4] and in the classification phase [5]. Although a great

effort was devoted to find efficient computational

implementations both for the training phase (in which

the tractability of the optimisation process leading to the

SVM classifier is the most important issue) and for the

test phase (where the problem is the real-time evaluation

of f(x)), in this paper we address only the latter aspect of

the problem. Reducing the numerical complexity of the

classification phase is extremely important for

applications that must run in real-time, as e.g. video-

sequence analysis [2], therefore this topic is of actual

interest for the scientific community.

The computational complexity of the classification

phase can be evaluated in terms of the number of

elementary operations needed for the evaluation of f(x)

in every unlabeled pattern x. Examining the equations

(1), (2) and (3), one can see that each evaluation

requires Ns dot product computations in the form x
T
xs ,

s=1,2,...,Ns, followed by Ns kernel evaluations for every

x
T
xs, Ns multiplies with the constant ysαs and Ns-1

additions. The dot product is expressed as:

 ∑=
=

N

1i
siis

T
xxxx , (4)

[]TN21 x...xx=x ; []TsN2s1ss x...xx=x .

Thus to evaluate every x
T
xs one needs N multiplies and

N-1 additions, which leads to a total of approximately

2N⋅Ns operations per pattern classification. Furthermore,

considering that many image analysis tasks decompose

the image into a set of P patterns (partially overlapping

image windows), the number of operations needed for

the complete classification increases P times, to 2P⋅N⋅Ns

[1,2]. Therefore, speeding-up the classification phase

becomes a non-trivial task for real-world applications of

SVM classifiers. The types of solutions reported in the

literature depend of the type of implementation:

1) Solutions devoted to software implementations of

SVM classifiers. In this case, the computational time can

be decreased only by reducing the number of support

vectors Ns or the dimension of the feature space N since

all the computations are performed sequentially. Ns can

be minimised by selecting only the most significant

support vectors [5]. To reduce the feature space

dimension N, various data compression techniques can

be used as e.g. principal component analysis [6].

2) Solutions achieved by the hardware implementation

of SVM classifiers. In this case, the duration of the

classification phase is reduced by parallelising to the

largest possible extent the computation of f(x). Analog

implementations are recently reported in the literature

[7]. It is easy to see from equation (1) that all the

evaluations of the kernel function K(x,xs), s=1,2,...,Ns,

and the N feature-by-feature multiplies from the

computation of x
T
xs can be performed in parallel. This

leads to massively parallel circuit structures.

However, as the parallelism increases, the circuit level

complexity of the SVM classifier increases as well. A

massively increased complexity resulting for a large-

scale classification problem might be unpractical for

certain applications. A compromise solution would be a

partially sequential – partially parallel operation, lying

somewhere between the software and the hardware

implementation; this could provide a good trade-off

between the duration of the classification phase and the

hardware complexity, thus being also more suitable for

large-scale problems. Such a solution is proposed in this

paper. The proposed approach is the implementation of

each dot product x
T
xs, s=1,2,...,Ns, in a sequential analog

fashion, whereas the Ns dot product computations (and

of course kernel evaluations) will be done in parallel. A

number of Ns parallel analog circuit structures will be

needed for the evaluation of f(x). The computation of

x
T
xs in the analog sequential way is achieved by

providing time-continuous descriptions of the pattern x

and support vectors xs, using signal reconstruction

techniques from their samples. With the time-continuous

formulation of x and xs as analog signals x(t) and xs(t),

the computation of x
T
xs can be formulated as an analog

signal multiplication followed by a signal integration;

these operations can be implemented with simple analog

structures.

In this paper we prove, through a mathematical

demonstration, a Simulink model implementation and

through a set of experimental results performed with the

implemented Simulink model on a standard set for data

classification, the validity of the proposed algorithm. Its

circuit level implementation is currently an issue of our

ongoing research work in the field.

TIME-CONTINUOUS FORMULATION

OF THE CLASSIFICATION PHASE

The motivation for the proposed time-continuous

formulation of the SVM classification phase originates

from a typical application of SVM classifiers: the

classification of grey-level images based on their content

[1]. In the simplest implementation, the feature vector

for such a task is obtained by scanning the grey-level

digital image in row order. Thus every pattern x is just

an ordered collection of grey levels, as illustrated in

Figure 1a). However, one could consider not the digital

image representation, but the analog image

representation as in classical television applications. The

analog version of the image can be represented as a

sequence of time-continuos signals corresponding to

each scan line as in Figure 1b). The digital image is the

sampled and quantized version of the analog signal.

Thus x can also be represented as the sampled and

quantized version of the analog image, as in Figure 1c).

Fig. 1. Image description: a) as a digital image and in vector

form; b) in analog form (one scan line); c) alternate

representation as a sampled and quantized signal

Let us denote the description of the pattern x as a

sampled signal by X(t).

In analytical form, the sampled signal X(t) can be

expressed as follows:

a)

























=⇒

N

2

1

x

.

.

.

x

x

x

b)

c)







−===

=

otherwise,0

1N,...,1,0i;
f

i
ttif,x

)t(X
S

ii (5)

In equation (5), by fS we denote the sampling frequency

of the original analog signal from Figure 1b) to get the

sampled signal in Figure 1c). Of course every support

vector xs can be expressed just in the same fashion by a

corresponding sampled signal Xs(t), s=1,2,...,Ns.

We can consider that the (for this case, available) analog

versions of the images representing the pattern x and the

support vectors xs, namely the time-continuous signals

denoted by x(t) and xs(t), are just more complete

versions of the sampled signals X(t) and Xs(t). Then if

we can express the decision function f(x) of the SVM

classifier given by the equation (1) in respect to x(t) and

xs(t), s=1,2,...,Ns, we will obtain a time-continuous

formulation of the SVM classification phase. For the

time being, we will consider in equation (1) the use of

the linear kernel or polynomial kernel, as in these

functions x and xs appear only in the form of their dot

product, x
T
xs. Actually this is the only term that needs to

be expressed in a time-continuous fashion, according to

our implementation goal formulated in the previous

section.

Describing x and xs as the sampled signals X(t) and

Xs(t), x
T
xs given by equation (4) can be expressed as:

 ∑=
=

N

1i
isis

T
)t(X)t(Xxx , (6)

which furthermore, neglecting the effect of quantization,

can be expressed in terms of the analog time-continuous

signals x(t) and xs(t) as:

 ∑=
=

N

1i
isis

T
)t(x)t(xxx . (7)

Equation (7) can be written in continuous form as:

 ∫=
=

S
f/N

0t
ss

T
dt)t(x)t(xxx , (8)

which gives the basic of the time-continuous formulation

of the SVM classification proposed.

Although this time-continuous formulation was initiated

considering an image classification application, it can be

extended to any types of patterns x, regardless if their

features are of the same kind, as long as they are real

valued. However in the latter case, no time-continuous

analog version of x and xs, s=1,2,...,Ns, was ever

available. Therefore signal reconstruction methods as

e.g. generation of quantized but not sampled signals or

interpolation techniques must be applied to get analog

versions of the patterns. In practice, depending on the

reconstruction method, one might get as the result of the

integration a larger value than x
T
xs. However as long as

the result is proportional to the dot product by a known

constant factor, this is not a problem for the

computation.

With this formulation, the SVM classification phase can

be implemented using the equations (8), (1) and

(depending on the type of SVM) (2) or (3), as follows:

1) A sequential computation of each dot product x
T
xs,

s=1,2,...,Ns using an analog multiplier block that has at

its inputs the signals x(t) and xs(t), followed by an

analog integrator whose output is read at the moment

N/fS after the integration start and multiplied by the

constant αsys. This is illustrated in Figure 2 which is the

detailed description of the blocks “Weighted sum” from

Figure 3.

2) Parallel computations of all the dot products x
T
xs

for the Ns support vectors. This process requires a

number of Ns structures as the one given in Figure 2. For

a linear SVM, the Ns scalar outputs simply enter a

summation block along with the bias term b. For a non-

linear SVM with polynomial kernel, every scalar output

x
T
xs is first processed according to equation (3) prior to

summation.

Usually the number of support vectors Ns is much

smaller than the length of the feature vector N (in

practical applications – at least by a factor of 10).

Therefore the circuit complexity (defined as the number

of simple analog building blocks needed for the

implementation) is much smaller than in the massively

parallel structures, which makes the approach suitable

even for large scale SVM classification problems. On

the other hand the computational speed, although lower

than in the case of a fully parallel system, is higher than

in the case of a fully sequential system.

Fig. 2. Block diagram illustrating the sequential analog

implementation of the dot product xTxs

The last issue to complete the proposed formulation of

the SVM classification phase is the generation of the

time-continuous signals x(t) and xs(t) through signal

reconstruction techniques, from their sampled versions

X(t) and Xs(t), s=1,2,...,Ns.

Two issues should be mentioned here:

1) Assuming the same sampling frequency fS for X(t)

and for any Xs(t), any pair of sampled signals in the

form (X(t), Xs(t)) will ideally be perfectly synchronised.

However in practice this case will never hold. Thus if

one wants to use directly the sampled signals as inputs in

the computational block given in Figure 2, if any time

delay between X(t) and Xs(t) appears, a large error will

appear in the resulting dot product.

2) In the general case when x and xs do not originate

from analog, time-continuous signals, a value fS→∞

(corresponding to the ideal sampling) will not be as

beneficial as for analog signals. On the contrary, the

time-continuous signal multiplication will be again

prone to errors, as in the first case considered here, for

any time delay between the 2 signals.

In order to avoid these problems, one needs to provide

suitable reconstructed waveforms x(t) and xs(t) so that,

even in the presence of a time delay τd, the dot product

to be computed with a very small error. Two simple

solutions to produce signals x(t) and xs(t) that satisfy this

condition are given in the following:

1) The most simple solution is to consider x(t) and

xs(t) in the form of some quantized but not sampled

signals. In this case, “the restoration” of the time-

X
X ∫

x(t)

xs(t)

αsys

sxTx ⋅

continuous signals is achieved by repeating, on each

time interval [tk;tk+1), tk=k/fS, k=0,1,...,N-1, the

corresponding sample (feature) value, namely, xk+1 for

x(t) and xs,k+1 for xs(t). Thus x(t) and xs(t) will have the

following expressions:

 1N,...,1,0k),t;t[tforx)t(x 1kk1k −=∀∈= ++ (9a)

 1N,...,1,0k),t;t[tforx)t(x 1kk1k,ss −=∀∈= ++ (9b)

The resulting signals x(t) and xs(t) for some

{ }sN,...,2,1s ∈ are illustrated in Figure 5 of the

Experimental results section, for a particular example

with Ns=2 and N=4 (the plots denoted XTest and SV1

on Scope 1). They can be considered periodical square

wave signals, with the period N/fS.

Thus, in the ideal case of no time delay between x(t) and

xs(t), at the output of the integrator from Figure 2 we

will have at the moment N/fS after the start of the

integration, the numerical value:

,N,...,2,1s,
f

1
xx

f

1

dt)t(x)t(xdt)t(x)t(x

ss
T

S

N

1i
sii

S

1N

0k f/k
s

0
s

S
f/)1k(

S

S
f/N

=⋅=∑=

∑ ∫∫ =

=

−

=

+

xx

 (10)

that is proportional to the dot product by a factor of 1/fS.

If fS=1, equation (10) gives exactly the dot product x
T
xs.

2) Another simple solution would be to generate the

time-continuous signals x(t) and xs(t), s=1,2,...,Ns, from

their discrete samples by interpolation. The most simple

procedure is the linear interpolation. The advantage of

such an approach in the generation of x(t) and xs(t) is

that the signals will not have any local discontinuities.

However when x(t) and xs(t) are piecewise linear, their

product on each time interval [tk;tk+1) will be a 2
nd

degree polynomial, thus its integral will no longer be

proportional to the dot product x
T
xs by a constant factor.

Therefore better interpolation methods should be found

to generate x(t) and xs(t). The investigation of such

methods will make the object of our future work.

A SIMULINK MODEL OF THE TIME-

CONTINUOUS SVM CLASSIFIER

The model of the time-continuous implementation of the

classification phase using SVM is shown in Figure 3.

This is a general bloc diagram that can be used for any

number of support vectors Ns. In this model, we describe

each support vector by the pair (xs,ys). The support

vectors, their corresponding Lagrange multipliers αs,

s=1,2,...,Ns, and the bias term of the hyperplane b are

previously detected in the training phase of the support

vector machine. Our implementation of the classification

phase is independent of the training method (i.e.

software or hardware).

The signals entering the classification phase are:

• The support vectors, denoted as Support Vector s,

s=1,…Ns, each vector being described by its

corresponding time-continuous signal xs(t) and its label

ys (as a time constant).

• The Lagrange multipliers αs, denoted by alpha s,

s=1,2,...,Ns, as time constants.

• The pattern to be classified x, denoted by Xtest,

described in the time-continuous fashion as x(t) given in

the previous section.

• The bias term b, denoted as Bias, as a time constant.

Fig. 3. Block diagram of the time-continuous SVM classifier

The number of the computational blocks “Weighted sum

s” equals the number of support vectors, to compute the

weighted sum of the corresponding support vector and

Xtest vector. The resulting time continuous signal from

these blocks, WSigma s, are added together with the

bias term, Bias, by the Sum block. The result is the

signal f(Xtest), that gives the evolution of the decision

function of the classifier evaluated in Xtest as a time-

continuous signal. It worth to mention that the

intermediate values of f(Xtest) show the effect of each

individual feature on the decision function. This is a

specific characteristic of our implementation as

compared to other implementations. Anyway the final

value of the decision function will be read as the value

of f(Xtest) at the moment N/fS, as described in the

previous section. The final classification result, i.e. the

Label, is provided by the Zero threshold comparator

block, as +1 if f(Xtest)>0, and -1 if f(Xtest)<0.

To verify the operation of the designed analog SVM

classifier, we implemented it in Simulink, under Matlab

environment. To keep the implementation simple, in

order to observe the full behavior of the classifier, we

chose a classifier with two support vectors. The detailed

Simulink model is presented in Figure 4. As one can see

the Simulink model has two computation channels, the

first one corresponds to the first support vector (upper

part) and the second one corresponds to the second

support vector (lower part).

First of all we generate the continuous time signals

corresponding to the features of all involved vectors:

- Xtest signal for test vector, using the block TestVect;

- SV1 signal for first support vector, using the block

SupVect1;

- SV2 signal for second support vector, using the block

SupVect2.

An example of these time-continuous signals can be

seen in the experimental results section, in Figure 5.

These signals are collected with Scope1, Scope2 and

Scope in the Simulink model. In our model we

considered a duration of 1s for each feature of the input

vector. The Product11 and Product21 blocks are

responsible for the multiplication of the test vector (the

signal Xtest) with the first support vector (the signal

SV1) and with the second support vector (the signal

SV2), thus producing the time-continuous signals

Xtest*SV1, Xtest*SV1. The integration of each product

signal by the blocks Integrator1 and Integrator2 gives

the cumulated sum corresponding to the dot product.

The resulting signals are Sigma1 and Sigma2, that are

further multiplied by the corresponding Lagrange

multiplier and the support vector’s label. The resulting

weighted signals are WSigma1 and WSigma2. Finally,

from these “partial” signals, the decision function

f(Xtest) is obtained according to the equation (1)

applied for a linear SVM, using a summation block with

three inputs: WSigma1, WSigma2 and Bias.

The signal f(Xtest) on the Scope represents the

evolution in time of the decision function of the

classifier. Although the classification result is given by

the value of f(Xtest) only at the moment N/fS (in our

case, t=4s), one can notice that the proposed

implementation allows us for an even better observation

of the SVM classification process, as follows. We can

consider in our example four significant time moment: 3

intermediate and one final. At t=1s, the decision

function contains only the classification result according

to the first feature and so on, up to t=4s, when we get the

final value of the decision function we are interested in.

Thus, in order to reduce the computation time, with a

proper ordering of the features according to their

significance, it yields possible to consider as final value

of the decision function the value at an intermediate time

moment, after taking into consideration only the most

significant features.

The label assignment to the unknown pattern Xtest to be

classified is implemented by the Sign block, in the

Simulink model. This block is a simple comparator

having the zero value for its threshold. The value of the

output signal of this block, Label, should be read et the

moment t=4s, after all the vectors’ features were

processed.

The Simulink model can be very easy extended for any

number of support vectors by simply replicating the

computing channels and adding the necessary inputs to

the summation block.

Our implementation is also very useful from the

didactical point of view. Due to the fact we have access

and can see the signals in all the intermediate points of

the computing flow, one can easy understand the

operations involved in the classification phase of the

SVM. Also, the verification of our future

implementation ideas mentioned in the previous section

is very easy with this model, due to its interactive mode

of operation.

EXPERIMENTAL RESULTS

We tested our implementation on a standard data set for

classification tasks, namely, the IRIS data [8]. Each

pattern in the data set is described by 4 features of an

iris flower: the petal length and width and the sepal

length and width. There are 3 classes of irises: Setosa,

Versicolor and Virginica. The goal is to classify each

individual pattern in one of the 3 classes. We consider in

our experiment the binary classification of an unknown

pattern in the class Setosa vs. the other 2 classes. For the

SVM training (needed to obtain the support vectors,

their Lagrange multipliers and the bias term) we used

Steve Gunn’s Matlab application [9]. The IRIS data set

contains 75 training patterns. The training is performed

for a linear SVM with the error penalty parameter C=1.

After the training phase we get 2 support vectors, whose

features, labels and Lagrange multipliers are presented

in Figure 4 and 5, along with the bias term of the

resulting classifier.

As test vectors, we selected 12 patterns from the

standard IRIS test set to be classified using two

implementation: Steve Gunn’s implementation

(considered here as reference classifier, and denoted as

SG) and our Simulink SVM classification

implementation (denoted as SCT). The values of the

decision function in the 2 implementations along with

the “target” classification results are presented in Table

1. Since the classification labels always match the target,

we do not list them in the table, but only the target ones,

denoted there as simply “Label”.

As one can notice by examining the results in Table 1,

the differences in the real value of the decision function

(error column in Table 1) computed by SG

implementation and our SCT implementation can be

considered zero, since their order is 10e-7 for all the test

vectors. So our SCT implementation always provides

correct values, for various signs and magnitudes of the

 decision function.

The computational details in each step of the algorithm

can be seen in Figure 5. This figure illustrates the

waveforms for all the input, intermediate and output

signals during the classification of the test vector 1 from

Table 1. The signal Xtest is very similar with the signal

SV1 but different from the signal SV2. This observation

is very important, being a qualitative information about

Fig. 4. The Simulink model of the time-continuous SVM

classifier

the membership of the test vector to the same class as

support vector 1. The time variation of the decision

function f(Xtest) is very important because it offers

information about an intermediate membership of the

test vector after taking into consideration only the firsts

features of the test vector, after each time period. In

accordance with the first feature (time moment t =1s),

f(Xtest)=0.364>0, label=+1, so the test vector belongs to

the Setosa class. Also considering the first two featurs

(t=2s), three features (t=3s), or all four features (t=4s)

we have f(Xtest)>0, label=+1, so Setosa class.

TABLE 1. Classification results

f(Xtest) Xtest

SG SCT error

Label

1. 0.8415397971 0.8415394766 -3.20e-07 1

2. 0.9282835252 0.9282832184 -3.06e-07 1

3. 0.7703558444 0.7703555818 -2.62e-07 1

4. 0.9946513779 0.9946510561 -3.22e-07 1

5. 1.2129277395 1.2129273884 -3.51e-07 1

6. 1.7282735109 1.7282731483 -3.63e-07 1

7. -4.5566642408 -4.5566646840 -4.43e-07 -1

8. -1.2689215012 -1.2689217966 -2.95e-07 -1

9. -2.3058037663 -2.3058041356 -3.69e-07 -1

10. -2.2193649549 -2.2193653424 -3.87e-07 -1

11. -1.3893638414 -1.3893641758 -3.34e-07 -1

12. -3.3223390851 -3.3223394769 -3.91e-07 -1

CONCLUSIONS

In this paper we proposed a new algorithm for the

implementation of the classification phase in SVM

classifiers. The aim is a good compromise solution

between the duration of the classification phase and its

complexity in analog hardware implementation. The

proposed algorithm is based on the description of the

feature vector x and support vectors xs of the SVM as

analog signals x(t) and respectively xs(t), which makes

possible to describe the kernel evaluation in a simple

analog signal processing fashion. The equivalence of the

standard formulation and the proposed time-continuous

formulation of the SVM classification phase is proven

by building a Simulink model and by a set of

experiments on the IRIS classification set. The graphical

illustration of the result provided by the time-continuous

representation of the signals is also useful to understand

the SVM classification and to further reduce the

computational time, providing an ordering of the

features based on their significance can be found. In our

future work we will implement the proposed solution

with simple analog circuits and search interpolation

methods to generate the continuous signals x(t) and xs(t).

THE AUTHORS

Gabriel Oltean and Mihaela Gordan are with the Basis

of Electronics Department, Technical University of

Cluj-Napoca,C. Daicoviciu 15, Cluj-Napoca, Romania.
E-mail: goltean@bel.utcluj.ro

REFERENCES

[1] I. Buciu, C. Kotropoulos, I. Pitas, “Combining

support vector machines for accurate face

detection”, IEEE Int. Conf. on Image Processing,

Thessaloniki, Greece, 2001, pp. 1054-1057

[2] V. P. Kumar, T. Poggio, “Learning-based approach

to real time tracking and analysis of faces”, Proc.

of AFGR, 2000, France, 2000, pp. 96--101

[3] V. N. Vapnik, Statistical Learning Theory, J.

Wiley, N.Y., 1998

[4] T. Joachims. Making large-scale SVM learning

practical. Advances in kernel methods - support

vector learning, B. Scoelkopf and C. Burges and

A. Smola (ed.). MIT-Press, 1999.

[5] Ding Ai-ling, Liu Fang, Zhao Xiang-mo, “The

massive data classifiers based on reduced set

vectors method”, IEEE 2002 Int. Conf. on

Comm., Circuits and Syst., vol. 2, pp. 1239 – 1242

[6] N. Ancona, G. Cicirelli, E. Stella and A. Distante,

“Object detection in images: complexity reduction

and parameter selection”, Proc. ICPR02, vol. 2,

pp. 426-429

[7] R. Genov, S. Chakrabartty, and G. Cauwenberghs

“Silicon Support Vector Machine with On-Line

Learning,” Int. J. of Pat. Recog. and Artificial

Intelligence, World Scientific, 2003, pp. 385-404

[8] R. A. Fisher, „The Use of Multiple Measurements

in Axonomic Problems”, Annals of Eugenics 7,

179-188, 1936

[9] S.R. Gunn, MATLAB Support Vector Machine

Toolbox (Internet), March 1998

Fig. 5. Classification of the test vector 1 using the SCT

implementation

