

Volume 47, Number 1, 2006 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

A PARTIALLY SEQUENTIAL-PARTIALLY PARALLEL ANALOG

IMPLEMENTATION OF A SVM CLASSIFIER

Gabriel OLTEAN Mihaela GORDAN Sorin HINTEA
Technical University of Cluj-Napoca,

Str. C. Daicoviciu 15, 400020, Phone 026440147, Gabriel.Oltean@bel.utcluj.ro

Abstract: The classification task in large data spaces can now relay on newly developed Support Vector Machine technique. A
trade-off between the hardware complexity and processing time is a partially sequential – partially parallel implementation of the
processing issues based on a description of the vectors as time-continuous signals. We present an analog implementation of a SVM
classifier that uses an analog multiplier to compute the dot product between each support vector and the test vector, in a sequential
manner. All the dot products necessary to classify a test vector are implemented in parallel. The correct operation and the accuracy
of our analog SVM classifier is proven on the IRIS dataset.

Key words: SVM classifier; analog multiplier, analog signal processing.
.

A PARTIALLY SEQUENTIAL-PARTIALLY PARALLEL ANALOG

IMPLEMENTATION OF A SVM CLASSIFIER

Gabriel OLTEAN Mihaela GORDAN Sorin HINTEA
Technical University of Cluj-Napoca,

Str. C. Daicoviciu 15, 400020, Phone 026440147, Gabriel.Oltean@bel.utcluj.ro

Abstract: The classification task in large data spaces can now relay on newly developed Support Vector Machine technique. A
trade-off between the hardware complexity and processing time is a partially sequential – partially parallel implementation of the
processing issues based on a description of the vectors as time-continuous signals. We present an analog implementation of a SVM
classifier that uses an analog multiplier to compute the dot product between each support vector and the test vector, in a sequential
manner. All the dot products necessary to classify a test vector are implemented in parallel. The correct operation and the accuracy
of our analog SVM classifier is proven on the IRIS dataset.

Key words: SVM classifier; analog multiplier, analog signal processing.

I. INTRODUCTION
 In its basic form, a SVM is a binary classifier based on
the optimal separating hyperplane algorithm that implements
the Structural Risk Minimisation principle. Based on a
training set the SVM learning algorithm derives the so-
called optimal separating hyperplane, which will perfectly
separate the positive and negative examples, with maximal
distance to the hyperplane [1]. The training vectors xs,

xs
NR , s=1,2,...,Ns, that are the closest positive and closest

negative to the hyperplane are called the support vectors of
the SVM. Their labels ys (+1 for a positive example and -1
for the negative example) and their associated positive
Lagrange multipliers s, define the decision function of the
SVM classifier as:

bxxKyxf ss

Ns

s

s 


),()(
1

 (1)

where:
x denotes a test vector to be classified by the SVM,

NRx ;
b represents the bias term of the hyperplane;

),(K represents a kernel that computes the dot product of

x and xs either in their original space
NR (for a linear SVM)

or in a higher dimensional feature space
MR , M>>N (for

non-linear SVMs) [1].

 The number of the support vectors Ns increases with the

complexity of the classification task. Furthermore, difficult

classification problems are in general associated to a large

dimensionality of the vectors space, N – large. This

increases the computational complexity of the SVM

classification.

 A great effort was devoted to find computationally

efficient implementations. Reducing the numerical

complexity of the classification phase is extremely important

for real-time applications, as e.g. video-sequence analysis.

Both hardware and software solutions are reported in the

literature; the software solutions, strictly sequential, are

based on reducing the dimension of the feature space N and

the number of support vectors Ns. In the hardware

implementations, the duration of the classification phase is

reduced by parallelising to the largest possible extent the

computation of f(x). Analog implementations recently

reported in the literature [2] make use of the possibility to

perform in parallel the kernel evaluations and the N feature-

by-feature multiplies in xTxs. This leads to massively parallel

circuit structures, difficult to implement for large problems.

 A compromise solution, partially sequential – partially

parallel, could provide a good trade-off between the

duration of the classification phase and the hardware

complexity. The proposed approach is the implementation

of each dot product xTxs, s=1,2,...,Ns, in a sequential analog

fashion, whereas the Ns dot product computations (kernel

evaluations) will be done in parallel. A number of Ns parallel

analog processing channels are needed to evaluate f(x). The

computation of xTxs in the analog sequential way is achieved

by providing time-continuous descriptions x(t) and xs(t) of

the test vector x and support vectors xs. Thus the

computation xTxs can be formulated as an analog

multiplication followed by integration, which can be

implemented with simple analog structures.

 The purpose of this paper is to build an analog circuit

with analog multipliers and op amps able to perform the

SVM classification in such a partially sequential, partially

parallel fashion. The circuit is developed for a classifier with

two support vectors and simulated in the Orcad CAD tool.

II. TIME-CONTINUOUS CLASSIFICATION
PHASE

For the time being, we will consider in equation (1) the

use of the linear kernel, K(x,xs)=xTxs. According to our

implementation goal, we need to express xTxs in a time-

continuous fashion.

Considering x and xs as sampled versions of two signals

x(t) and xs(t), xTxs is expressed as:

 dttxtxxx s

fN

t

s
T

S

)()(

0




 (2)

which gives the basic of the time-continuous formulation of

the SVM classification proposed; fs represents the sampling

frequency [3].

With this formulation, the SVM classification phase can

be implemented as follows:

 A sequential computation of each dot product xTxs,

s=1,2,...,Ns using an analog multiplier block with the

input signals x(t) and xs(t), followed by an integrator

whose output is read at the moment N/fS and multiplied

by αsys.

 Ns parallel analog processing of the dot products xTxs

using Ns structures, one for each support vector.

For a linear SVM, the Ns scalar outputs and the bias term

b enter a summation block.

The model of this time-continuous implementation is

shown in Figure 1. The signals entering the classification

phase are:

- the support vectors, denoted by “Support Vector s”,

s=1,…Ns as time-continuous signals xs(t) and their

labels ys (+1 or -1);

- the Lagrange multipliers s, denoted by “alpha s”,

s=1,2,...,Ns;

- the test vector to be classified x, denoted by “Xtest”,

as a time-continuous signal x(t);

- the bias term b, denoted as “Bias”.

The value of the decision function f(Xtest) is read at the

moment N/fS. Label is given by the Zero threshold

comparator: +1 if f(Xtest)>0 or -1 if f(Xtest)<0.

 The last issue to complete the proposed formulation of

the SVM classification phase is the generation of the signals

x(t) and xs(t) from their sampled versions x and xs,

s=1,2,...,Ns. In our implementation we adopt the technique

used in [3]. An illustration of the resulting signals x(t) and

xs(t) are illustrated in Figure. 5, for a particular example

with Ns=2 and N=4 (the plots denoted XTEST and SV1).

They can be considered periodical square wave signals, with

the period N/fS. In the ideal case of no time delay between

x(t) and xs(t), at the output of the integrator, at the moment

N/fS we will obtain [3]:

  









N

i

sii

S

N

k k/f

ss xx
f

(t)dtx(t)x(t)dtx(t)x

S
)/f(k

S

S
N/f

1

1

00

1
1

 (3)

s=1, 2, … NS, that is proportional to the dot product by a

factor of 1/fS.

III. PARTIALLY SEQUENTIAL-PARTIALLY
PARALLEL ANALOG SVM CLASSIFIER

The designed analog SVM classifier is implemented in

Orcad using the MLT04 analog multiplier to carry out the

multiplication, and some operational amplifier for

integration, summation and comparison. In order to gain

insight in the full behavior of the classifier, we choose a

simple classifier with two support vectors.

The analog multiplier block that implements the feature-

by-feature multiplication of each support vector with the test

vector is presented in Figure 2. The inputs of the analog

multiplier circuit, MLT04/AD, are denoted with X and Y,

while the output is denoted with W. According with its data

sheet [4], the analog input range is ± 2.5V and it operates

from ± 5V supply. Output offset voltage in the MLT04 is

factory-trimmed to ±50 mV, and the scale factor is internally

adjusted to ±2.5% of full scale. Input offset voltage errors

can be eliminated by using the optional trim circuits (U11A,

Figure 1. Block diagram of the analog SVM classifier

P11, R14, R11, R12, R13 for input X) in Figure 2.

This scheme reduces the net error to output offset, scale-

factor (gain) error, and an irreducible nonlinearity

component in the multiplying core. The scale factor of the

multiplier being 2.5, it follows:

5.2

XY
W  (4)

We should mention here that the input voltage sources

Vsv1 for support vector, and Vtest for the test vector

provide constant positive values lasting 1ms for each vector

feature. Both signals appear with negative values at the input

of the analog multiplier due to the inverting trim circuit.

Multiplying two negative values, the multiplier generates

only positive signal to its output. Anyway, because of the

nonlinearity of the multiplication we have trimmed the

circuit to minimize the errors for an input range of [0.3V;

2.5V]. It is not a difficult task to prove the relation between

the input and output signals:

V.

)(t)Xtest(tSV
)(t)(Xtest*SV

52

1
1  (5)

 Figure 3. presents the integrator and the multiplication

circuit that computes the signal WSigma1. One problem

with the integrator (U12A, C1i, R16 and R17) is that the

output tends to wander off even for zero voltage at the

analog multiplier inputs, because a very small voltage (few

mV) is present at the integrator input due to the non-perfect

offset trimming of the analog multiplier. This problem can

be solved [4] if the integrator is zeroed periodically (in our

case the period is N/fS) by closing a switch placed across the

capacitor (M1 field effect transistor). The integrator is an

inverting one, therefore the signal at its output is denoted –

Sigma1. The expression for –Sigma1 is:



sN/f

i

dt
.

)(t)(Xtest*SV

CR
(t)Sigma

0116 52

11
1 (6)

Since the signal)(t)(Xtest*SV1 is piecewise constant,

the result at the end of integration is:

52

111
1

116 .

Xtest*SV

fCR
)(N/fSigma

Si

S  (7)

To make -Sigma1 to be exactly the dot product, we set

the value of 2.5ms for the time constant of the integrator

(R16C1i) and the value of 1ms for 1/fS. Thus at the end of the

integration, we get:

11 Xtest*SV)(N/fSigma S  (8)

The right part of the circuit in Figure 3. (U13A and the

components around) performs the multiplication of the

0

0

-5V

Xtest

Um1A

MLT04/AD

X

Y

G
N

D

W
V

+
V

-

+5V

Ut11A

+

-

P11

SET = 0.4

31

2

+5V

R11

Rt11

R13

R12

0

-5V

Vtest

Xtest*SV1

0

Rt12

+5V

Vsv1

R14
SV1

U11A

+

-

Rt13

0

Pt11

SET = 0.58

31

2

Rt14
-5V

Figure. 2 The feature-by-feature multiplication

circuit.

Vcmd

-Sigma1
Xtest*SV1 U12A

+

-

0

SET1=0.5*(1+(ALPHA1/10)*LABEL1)

R18 U13A
+

-

R17

P12

3

1

2

M1

0

-WSigma1/10

R110

C1i

R16

R19

Figure 3. The integration and the multiplication circuits.

signal -Sigma1 with the label and the Lagrange multiplier of

the support vector. As one can find, the gain of this

amplifier can be set in the range [-1,1] using the P12

potentiometer (for R19=R110). The sign of the gain sets the

Label (-1 or +1), while the gain magnitude sets the value of

the Lagrange multiplier, Alpha. The current implementation

assumes Lagrange multipliers Alpha less than 1.

 The output signal is:

)SET(SigmaWSigma 1211  (9)

where SET is the fraction of the potentiometer between its

tap and its end connected to the ground. For a specific

Alpha, the SET is computed as

)LabelAlpha(.SET 11150  (10)

If the values of Alphas after the training phase are larger,

we should scale them in the range [0;1]. Using the same

scaling factor for all Alphas and for BIAS, the result is a

scaled version of the decision function of the SVM, keeping

the sign of the initial non-scaled version.

The next circuits are the summing and the comparator, as

one can see in Figure 4. The first one adds the values of -

WSigma1, -WSigma2 and –BIAS. The BIAS value is set by

the the Pbias potentiometer. If R2=R3=R4=R5, the decision

function computed to the output of the inverting summing

circuit is:

f(t)=-(-WSigma1(t)-WSigma2(t)-BIAS)

f(t)=WSigma1(t)+WSigma2(t)+BIAS (11)

Finally, the simple non-inverting comparator (U2A)

gives the class label. It responds with a positive voltage

(close to the positive supply) for a positive example or with

a negative voltage (close to the negative supply) for a

negative example. Our proposed implementation can be

easily extended for more support vectors by replicating the

computing channels and adding inputs to the summing

block. Because the involved MLT04 circuit has four

channels we can build a four-support vector SVM classifier

with only one such analog multiplier integrated circuit.

IV. EXPERIMENTAL RESULTS

We tested our implementation on a standard data set for

classification tasks, namely, the IRIS data. Each pattern is

described by four features: the petal length and width; the

sepal length and width. There are 3 classes of irises: Setosa,

Versicolor and Virginica. We have considered here the

binary classification in the class Setosa vs. the other 2

classes. For the SVM training we used Steve Gunn’s Matlab

application [6]. The IRIS data set contains 75 training

vectors.

The range of the iris flower features is [0.1;7.9]. Because

in our implementation the range of input voltages of the

analog multiplier is [0.3V; 2.5V], we use a data conversion

in the form:

converted data=0.27179+0.28205data (12)

We trained on this converted data a linear SVM with the

error penalty parameter C=10. After training we got 2
support vectors. We classify the standard IRIS test set using
two classifier implementations: the software Steve Gunn’s
implementation (considered here as reference classifier, and
denoted SSG) and our hardware analog time continuous
SVM implementation (denoted as HATC). The values of the
decision function in the two implementations and the
“target” classification results are given in Table 1, for ten
test vectors. In our implementation we scaled the values of
Alphas and BIAS by a factor of 0.1, to bring them in the
range [0;1]. As a result the decision function is also scaled
by a factor of 0.1. In order to have a direct comparison
between the numerical results we present the values of the
decision function resulted in the SSG implementation
divided ten times, f(Xtest)/10. The classification labels,
given by the sign of f(Xtest), always match the target ones,
denoted there as Label.

Table 1. Classification results

As one can notice by examining Table 1, the differences

in the real value of the decision function computed by SSG

implementation and our HATC implementation are very

small. In fact we can observe that for all the test vectors the

values of the decision function are approximately with 9mV

less than the value corresponding to the SSG

implementation. For example for the 2nd test vector we

Xtest
f(Xtest)/10

SSG

f(Xtest)/10

HATC [V]
Label

1. 0.1107 0.1018 1

2. -0.3407 -0.3496 -1

3. -0.4557 -0.4645 -1

4. -0.1179 -0.1268 -1

5. 0.0842 0.0751 1

6. 0.0928 0.0838 1

7. 0.1728 0.1617 1

8. 0.0770 0.0681 1

9. -0.1269 -0.1358 -1

10. -0.2877 -0.2966 -1

Figure 4. The summing and the comparator circuits

0

Label

0 R5

f0

U1A
+

-Pbias

3

1

2

SET=-BIAS

-1V

-WSigma2

-WSigma1

R1

R2

R3

R4

U2A
+

-

obtained -0.3496V instead of -0.3407, meaning a difference

of 8.9mV; for 6th test vector we obtained 0.0838V instead of

0.0928, meaning a difference of 9mV; for 9th test vector we

obtained -0.1358V instead of -0.1269, meaning a difference

of 8.9mV. This seems to be systematic departure from the

right value, so it can be considered as a negative offset

voltage for the decision function. If a greater accuracy is

necessary we have to compensate this offset voltage. As a

whole, we can conclude that our HATC implementation is

very accurate, all the test vector being correctly classified.

 The computational details in each step of the algorithm

can be seen in Figure 5. This figure illustrates the

waveforms for all the inputs, intermediate and output signals

during the classification of the 4th test vector in Table 1. The

signal for the test vector V(XTEST) is quite similar with the

signal for the second support vector V(SV2) but different

from the signal of the first support vector V(SV1). We can

anticipate a membership of the test vector at the same class

as SV2.

After the feature-by-feature multiplication of the test

vector with each support vector we obtain the signals

V(XTEST*SV1), respectively V(XTEST*SV1). We mention

here that these signals contains the scale factor of the analog

multiplier. As we mentioned earlier, the time constant of the

integrator compensates the scale factor of the analog

multiplier. At the time moment N/fS=4ms (N=4, the number

of each vector features; fS=1kHz, the sampling frequency)

we have the scalar values of the kernel function:

V(–SIGMA1)=-4.955V, respectively V(–SIGMA2)=-5.377V.

The minus sign appears due to the inverting integrator. The

signal V(-WSIGMA1/10), keeps the same sign with the

V(-SIGMA1) because the label of the first support vector is

LABEL1=+1, but it is weighted with one tenth of the

corresponding Lagrange multiplier

(0.1·8.69220391247454). The signal V(-WSIGMA2/10),

changes the sign compared with V(-SIGMA2) because the

label of the second support vector is LABEL2=-1, and it is

weighted with one tenth of the corresponding Lagrange

multiplier (0.1·8.69220394804136). The time variation of

the decision function V(F/10) gives important information

about intermediate memberships of the test vector after

taking into consideration only the first features of the test

vector, after each time period. In accordance with the first

two features (time moment t=2ms), V(F/10)>0V,

V(LABEL)=+14.3V (corresponding to Label=+1), so the

test vector appears to belong to the Setosa class. However

after considering the third feature (t=3s), V(F/10)<0,

V(LABEL)=-14.3V so the test vector does not belong to

Setosa. The final result (at t=4ms) confirms this

classification: V(F/10)=-0.1268V, V(LABEL)=-14.3V

(corresponding to Label=-1).

Figure 5. Experimental

results

CONCLUSIONS

In this paper we proposed a partially sequential-partially

parallel implementation of the SVM classification phase

based on a analog multiplier. This new implementation

represents a good compromise solution between the duration

of the classification phase and its complexity in analog

hardware implementation, especially in large data spaces.

The proposed algorithm is based on the description of the

feature vector x and support vectors xs of the SVM as analog

signals x(t) and xs(t), making possible to implement the

kernel in a simple analog signal processing fashion. The

equivalence of the standard formulation and the proposed

implementation was proven using an SVM classifier with

two support vector implemented with a MLT04 analog

multiplier and operational amplifiers. The accuracy of the

classifier was then tested through experiments on the IRIS

dataset. The decision function was correctly computed for

all the test vectors, with a systematic small offset voltage

around 9mV; all the test vectors were correctly classified.

The graphical illustration of the time-continuous

classification is useful to understand the SVM classification

process, and also can help a lot in selecting only the

important features of the vector to reduce the computing

time. It is worth to mention that the complexity of the

hardware increases with the number of support vectors of

the classifier, as in the existing hardware implementations,

but does not increase at all with the data dimension. This is a

great advantage compared with the existing implementation,

where the complexity increases in direct ratio with the data

dimension.

REFERENCES
[1] V. N. Vapnik, Statistical Learning Theory, J. Wiley, N.Y.,

1998.

[2] R. Genov, S. Chakrabartty, G. Cauwenberghs, “Silicon Support

Vector Machine with On-Line Learning”, Int. J. of Pat. Recog.

and Artificial Intelligence, 2003, pp. 385-404.

[3] G. Oltean, Mihaela Gordan, “Towards Analog Implementation

of Support Vector Machine: A Time-continuous Formulation of

the Classification Phase”, Proceedings of the 12th International

Conference Mixed Design of Integrated Circuits and Systems

MIXDES, 2005, pp.549-554.

[4] *** MLT04, Four-Channel, Four-Quadrant Analog Multiplier

Data Sheet, Analog Devices.

[5] Horowitz, P., Hill, W. – The Art of Electronics, Cambridge

University Press, UK, 1997.

[6] S.R. Gunn, MATLAB Support Vector Machine Toolbox,

March1998, http://www.isis.ecs.soton.ac.uk/resources/svminfo.

	ATN00
	ATN2006

