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Abstract: The classification task in large data spaces can now relay on newly developed Support Vector Machine technique. A 
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I. INTRODUCTION 
 In its basic form, a SVM is a binary classifier based on 
the optimal separating hyperplane algorithm that implements 
the Structural Risk Minimisation principle. Based on a 
training set the SVM learning algorithm derives the so-
called optimal separating hyperplane, which will perfectly 
separate the positive and negative examples, with maximal 
distance to the hyperplane [1]. The training vectors xs, 

xs
NR , s=1,2,...,Ns, that are the closest positive and closest 

negative to the hyperplane are called the support vectors of 
the SVM. Their labels ys (+1 for a positive example and -1 
for the negative example) and their associated positive 
Lagrange multipliers s, define the decision function of the 
SVM classifier as:   
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where: 
x denotes a test vector to be classified by the SVM, 

NRx ;  
b represents the bias term of the hyperplane;  

),( K represents a kernel that computes the dot product of  

x and xs either in their original space 
NR (for a linear SVM) 

or in a higher dimensional feature space 
MR , M>>N (for 

non-linear SVMs) [1].  

     The number of the support vectors Ns increases with the 

complexity of the classification task. Furthermore, difficult 

classification problems are in general associated to a large 

dimensionality of the vectors space, N – large. This 

increases the computational complexity of the SVM 

classification. 

     A great effort was devoted to find computationally 

efficient implementations. Reducing the numerical 

complexity of the classification phase is extremely important 

for real-time applications, as e.g. video-sequence analysis.  

Both hardware and software solutions are reported in the 

literature; the software solutions, strictly sequential, are 

based on reducing the dimension of the feature space N and 

the number of support vectors Ns. In the hardware 

implementations, the duration of the classification phase is 

reduced by parallelising to the largest possible extent the 

computation of f(x). Analog implementations recently 

reported in the literature [2] make use of the possibility to 

perform in parallel the kernel evaluations and the N  feature-

by-feature multiplies in xTxs. This leads to massively parallel 

circuit structures, difficult to implement for large problems.  

      A compromise solution, partially sequential – partially 

parallel, could provide a good trade-off between the 

duration of the classification phase and the hardware 

complexity. The proposed approach is the implementation 

of each dot product xTxs, s=1,2,...,Ns, in a sequential analog 

fashion, whereas the Ns dot product computations (kernel 

evaluations) will be done in parallel. A number of Ns parallel 

analog processing channels are needed to evaluate f(x). The 

computation of xTxs in the analog sequential way is achieved 

by providing time-continuous descriptions x(t) and xs(t) of 

the test vector x and support vectors xs. Thus the 

computation xTxs can be formulated as an analog 

multiplication followed by integration, which can be 

implemented with simple analog structures.  

     The purpose of this paper is to build an analog circuit 

with analog multipliers and op amps able to perform the 

SVM classification in such a partially sequential, partially 

parallel fashion. The circuit is developed for a classifier with 

two support vectors and simulated in the Orcad CAD tool.     
 



 
 

II. TIME-CONTINUOUS CLASSIFICATION 
PHASE 

For the time being, we will consider in equation (1) the 

use of the linear kernel, K(x,xs)=xTxs. According to our 

implementation goal, we need to express xTxs in a time-

continuous fashion.  

Considering x and xs as sampled versions of two signals 

x(t) and xs(t), xTxs is expressed as: 
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which gives the basic of the time-continuous formulation of 

the SVM classification proposed; fs represents the sampling 

frequency [3].  

With this formulation, the SVM classification phase can 

be implemented as follows: 

 A sequential computation of each dot product xTxs, 

s=1,2,...,Ns using an analog multiplier block with the 

input signals x(t) and xs(t), followed by an integrator 

whose output is read at the moment N/fS and multiplied 

by αsys. 

 Ns parallel analog processing of the dot products xTxs 

using Ns structures, one for each support vector.  

For a linear SVM, the Ns scalar outputs and the bias term 

b enter a summation block. 

The model of this time-continuous implementation is 

shown in Figure 1. The signals entering the classification 

phase are:  

- the support vectors, denoted by “Support Vector s”, 

s=1,…Ns as time-continuous signals xs(t) and their 

labels ys (+1 or -1);  

- the Lagrange multipliers s, denoted by “alpha s”, 

s=1,2,...,Ns;  

- the test vector to be classified x, denoted by “Xtest”, 

as a time-continuous signal x(t);  

- the bias term b, denoted as “Bias”. 

The value of the decision function f(Xtest) is read at the 

moment N/fS. Label is given by the Zero threshold 

comparator: +1 if f(Xtest)>0 or -1 if f(Xtest)<0. 

 The last issue to complete the proposed formulation of 

the SVM classification phase is the generation of the signals 

x(t) and xs(t) from their sampled versions x and xs, 

s=1,2,...,Ns. In our implementation we adopt the technique 

used in [3].  An illustration of the resulting signals x(t) and 

xs(t) are illustrated in Figure. 5, for a particular example 

with Ns=2 and N=4 (the plots denoted XTEST and SV1). 

They can be considered periodical square wave signals, with 

the period N/fS. In the ideal case of no time delay between 

x(t) and xs(t), at the output of the integrator, at the moment 

N/fS we will obtain [3]: 
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s=1, 2, … NS, that is proportional to the dot product by a 

factor of 1/fS.  
 

III. PARTIALLY SEQUENTIAL-PARTIALLY 
PARALLEL ANALOG SVM CLASSIFIER 

The designed analog SVM classifier is implemented in 

Orcad using the MLT04 analog multiplier to carry out the 

multiplication, and some operational amplifier for 

integration, summation and comparison. In order to gain 

insight in the full behavior of the classifier, we choose a 

simple classifier with two support vectors.  

The analog multiplier block that implements the feature-

by-feature multiplication of each support vector with the test 

vector is presented in Figure 2. The inputs of the analog 

multiplier circuit, MLT04/AD, are denoted with X and Y, 

while the output is denoted with W. According with its data 

sheet [4], the analog input range is ± 2.5V and it operates 

from ± 5V supply. Output offset voltage in the MLT04 is 

factory-trimmed to ±50 mV, and the scale factor is internally 

adjusted to ±2.5% of full scale. Input offset voltage errors 

can be eliminated by using the optional trim circuits (U11A,  

Figure 1. Block diagram of the analog SVM classifier 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P11, R14, R11, R12, R13 for input X) in Figure 2. 

This scheme reduces the net error to output offset, scale-

factor (gain) error, and an irreducible nonlinearity 

component in the multiplying core. The scale factor of the 

multiplier being 2.5, it follows: 
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We should mention here that the input voltage sources 

Vsv1 for support vector, and Vtest for the test vector 

provide constant positive values lasting 1ms for each vector 

feature. Both signals appear with negative values at the input 

of the analog multiplier due to the inverting trim circuit. 

Multiplying two negative values, the multiplier generates 

only positive signal to its output. Anyway, because of the 

nonlinearity  of  the  multiplication  we  have  trimmed  the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

circuit to minimize the errors for an input range of [0.3V; 

2.5V]. It is not a difficult task to prove the relation between 

the input and output signals: 
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       Figure 3.  presents the integrator and the multiplication 

circuit that computes the signal WSigma1. One problem 

with the integrator (U12A, C1i, R16 and R17) is that the 

output tends to wander off even for zero voltage at the 

analog multiplier inputs, because a very small voltage (few 

mV) is present at the integrator input due to the non-perfect 

offset trimming of the analog multiplier. This problem can 

be solved [4] if the integrator is zeroed periodically (in our 

case the period is N/fS) by closing a switch placed across the 

capacitor (M1 field effect transistor). The integrator is an 

inverting one, therefore the signal at its output is denoted – 

Sigma1. The expression for –Sigma1 is: 
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Since the signal )(t)(Xtest*SV1  is piecewise constant, 

the result at the end of integration is: 
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To make -Sigma1 to be exactly the dot product, we set 

the value of 2.5ms for the time constant of the integrator 

(R16C1i) and the value of 1ms for 1/fS. Thus at the end of the 

integration, we get: 
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The right part of the circuit in Figure 3. (U13A and the 

components  around)  performs  the  multiplication  of  the  
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circuit. 
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signal -Sigma1 with the label and the Lagrange multiplier of 

the support vector. As one can find, the gain of this 

amplifier can be set in the range [-1,1] using the P12 

potentiometer (for R19=R110). The sign of the gain sets the 

Label (-1 or +1), while the gain magnitude sets the value of 

the Lagrange multiplier, Alpha. The current implementation 

assumes Lagrange multipliers Alpha less than 1.  

       The output signal is: 

 

            )SET(SigmaWSigma 1211                   (9) 

 

where SET is the fraction of the potentiometer between its 

tap and its end connected to the ground. For a specific 

Alpha, the SET is computed as  
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If the values of Alphas after the training phase are larger, 

we should scale them in the range [0;1]. Using the same 

scaling factor for all Alphas and for BIAS, the result is a 

scaled version of the decision function of the SVM, keeping 

the sign of the initial non-scaled version. 

The next circuits are the summing and the comparator, as 

one can see in Figure 4. The first one adds the values of -

WSigma1, -WSigma2 and –BIAS. The BIAS value is set by 

the the Pbias potentiometer. If R2=R3=R4=R5, the decision 

function computed to the output of the inverting summing 

circuit is:  

 

f(t)=-(-WSigma1(t)-WSigma2(t)-BIAS) 

f(t)=WSigma1(t)+WSigma2(t)+BIAS             (11) 

       

Finally, the simple non-inverting comparator (U2A) 

gives the class label. It responds with a positive voltage 

(close to the positive supply) for a positive example or with 

a negative voltage (close to the negative supply) for a 

negative example. Our proposed implementation can be 

easily extended for more support vectors by replicating the 

computing channels and adding inputs to the summing 

block. Because the involved MLT04 circuit has four 

channels we can build a four-support vector SVM classifier 

with only one such analog multiplier integrated circuit.  

IV. EXPERIMENTAL RESULTS 

We tested our implementation on a standard data set for 

classification tasks, namely, the IRIS data. Each pattern is 

described by four features: the petal length and width; the 

sepal length and width. There are 3 classes of irises: Setosa, 

Versicolor and Virginica. We have considered here the 

binary classification in the class Setosa vs. the other 2 

classes. For the SVM training we used Steve Gunn’s Matlab 

application [6]. The IRIS data set contains 75 training 

vectors.  

The range of the iris flower features is [0.1;7.9]. Because 

in our implementation the range of input voltages of the 

analog multiplier is [0.3V; 2.5V], we use a data conversion 

in the form:  

 

converted data=0.27179+0.28205data                (12) 

 
We trained on this converted data a linear SVM with the 

error penalty parameter C=10. After training we got 2 
support vectors. We classify the standard IRIS test set using 
two classifier implementations: the software Steve Gunn’s 
implementation (considered here as reference classifier, and 
denoted SSG) and our hardware analog time continuous 
SVM implementation (denoted as HATC). The values of the 
decision function in the two implementations and the 
“target” classification results are given in Table 1, for ten 
test vectors. In our implementation we scaled the values of 
Alphas and BIAS by a factor of 0.1, to bring them in the 
range [0;1]. As a result the decision function is also scaled 
by a factor of  0.1. In order to have a direct comparison 
between the numerical results we present the values of the 
decision function resulted in the SSG implementation 
divided ten times, f(Xtest)/10. The classification labels, 
given by the sign of f(Xtest), always match the target ones, 
denoted there as Label. 

 

Table 1. Classification results 

 

As one can notice by examining Table 1, the differences 

in the real value of the decision function computed by SSG 

implementation and our HATC implementation are very 

small. In fact we can observe that for all the test vectors the 

values of the decision function are approximately with 9mV 

less than the value corresponding to the SSG 

implementation. For example for the 2nd test vector we 

Xtest 
f(Xtest)/10 

SSG 

f(Xtest)/10 

HATC [V] 
Label 

1. 0.1107 0.1018 1 

2. -0.3407 -0.3496 -1 

3. -0.4557 -0.4645 -1 

4. -0.1179 -0.1268 -1 

5. 0.0842 0.0751 1 

6. 0.0928 0.0838 1 

7.   0.1728 0.1617 1 

8. 0.0770 0.0681   1 

9. -0.1269 -0.1358 -1 

10. -0.2877 -0.2966 -1 

Figure 4. The summing and the comparator circuits 
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obtained -0.3496V instead of -0.3407, meaning a difference 

of 8.9mV; for 6th test vector we obtained 0.0838V instead of 

0.0928, meaning a difference of 9mV; for 9th test vector we 

obtained -0.1358V instead of -0.1269, meaning a difference 

of 8.9mV. This seems to be systematic departure from the 

right value, so it can be considered as a negative offset 

voltage for the decision function. If a greater accuracy is 

necessary we have to compensate this offset voltage. As a 

whole, we can conclude that our HATC implementation is 

very accurate, all the test vector being correctly classified. 

  The computational details in each step of the algorithm  

can be seen in Figure 5. This figure illustrates the 

waveforms for all the inputs, intermediate and output signals 

during the classification of the 4th test vector in Table 1. The 

signal for the test vector V(XTEST) is quite similar with the 

signal for the second support vector V(SV2) but different 

from the signal of the first support vector V(SV1). We can 

anticipate a membership of the test vector at the same class 

as SV2. 

After the feature-by-feature multiplication of the test 

vector with each support vector we obtain the signals  

V(XTEST*SV1), respectively V(XTEST*SV1). We mention 

here that these signals contains the scale factor of the analog 

multiplier. As we mentioned earlier, the time constant of the 

integrator compensates the scale factor of the analog 

multiplier. At the time moment N/fS=4ms (N=4, the number 

of each vector features; fS=1kHz, the sampling frequency) 

we   have   the   scalar   values  of   the  kernel  function:  

V(–SIGMA1)=-4.955V, respectively V(–SIGMA2)=-5.377V. 

The minus sign appears due to the inverting integrator. The 

signal  V(-WSIGMA1/10),  keeps  the  same  sign with the 

V(-SIGMA1) because the label of the first support vector is 

LABEL1=+1, but it is weighted with one tenth of the 

corresponding Lagrange multiplier 

(0.1·8.69220391247454). The signal V(-WSIGMA2/10), 

changes the sign compared with V(-SIGMA2) because the 

label of the second support vector is LABEL2=-1, and it is 

weighted with one tenth of the corresponding Lagrange 

multiplier (0.1·8.69220394804136). The time variation of 

the decision function V(F/10) gives important information 

about intermediate memberships of the test vector after 

taking into consideration only the first features of the test 

vector, after each time period. In accordance with the first 

two features (time moment t=2ms), V(F/10)>0V, 

V(LABEL)=+14.3V (corresponding to Label=+1), so the 

test vector appears to belong to the Setosa class. However 

after considering the third feature (t=3s), V(F/10)<0, 

V(LABEL)=-14.3V so the test vector does not belong to 

Setosa. The final result (at t=4ms) confirms this 

classification: V(F/10)=-0.1268V, V(LABEL)=-14.3V 

(corresponding to Label=-1).  

 

Figure 5. Experimental  

results 



 
 

CONCLUSIONS 

In this paper we proposed a partially sequential-partially 

parallel implementation of the SVM classification phase 

based on a analog multiplier. This new implementation 

represents a good compromise solution between the duration 

of the classification phase and its complexity in analog 

hardware implementation, especially in large data spaces. 

The proposed algorithm is based on the description of the 

feature vector x and support vectors xs of the SVM as analog 

signals x(t) and xs(t), making possible to implement the 

kernel in a simple analog signal processing fashion. The 

equivalence of the standard formulation and the proposed 

implementation was proven using an SVM classifier with 

two support vector implemented with a MLT04 analog 

multiplier and operational amplifiers. The accuracy of the 

classifier was then tested through experiments on the IRIS 

dataset. The decision function was correctly computed for 

all the test vectors, with a systematic small offset voltage 

around 9mV; all the test vectors were correctly classified. 

The graphical illustration of the time-continuous 

classification is useful to understand the SVM classification 

process, and also can help a lot in selecting only the 

important features of the vector to reduce the computing 

time. It is worth to mention that the complexity of the 

hardware increases with the number of support vectors of 

the classifier, as in the existing hardware implementations, 

but does not increase at all with the data dimension. This is a 

great advantage compared with the existing implementation, 

where the complexity increases in direct ratio with the data 

dimension.  
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