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Abstract: The paper presents a new method for optimizing the analog circuits design. The method performs a multiobjective 

optimization, the parameter modification taking into account the unfulfillement degrees of all the requirements. The method uses 

fuzzy sets to define fuzzy objectives and fuzzy systems to compute new parameter values. The solution of a multiobjective 

optimization is a set of Pareto optimal points. We can obtain the set of Pareto optimal points using the idea of population of 

solutions. We select as the final optimal solution the one with smallest mean of unfulfillement degrees of requirements (zero if 

possible). The strategy to compute new parameter values uses local gradient information and encapsulates human expert thinking: 

to improve a performance we modify mostly the parameter with more influence. This way every Pareto optimal point can be found 

with  accuracy. 

After introducing our optimization method, we optimize the design of a common-emitter amplifier. As expected the results prove 

that the method is efficient. For different sets of requirements we found a set of Pareto optimal points and for the sets with non-

conflicting requirements the final solution has the mean of unfulfillement degrees equal to zero. 
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I. INTRODUCTION 

Even we are in the digital age, everyone is finding the 

need for a little bit of analog, at least at the interface 

between the electronic systems and the “real” world. 

According to [1] nearly 70 percent of all ICs will have 

analog components within five years, compared with 

about 25 percent today. 

As the demand for mixed-mode integrated circuits 

increases, the design of analog circuit becomes more 

critical. Many authors have noted the disproportionately 

large design time devoted to the analog circuitry in mixed 

mode integrated circuits. [2] Predictions abound that 

analog design will become a barrier for the next 

generation system-on-a-chip design [3]. 

The best way to rapidly design such mixed system is 

to develop CAD tools that can automatically design 

analog cells [4]. 

As Gielen and Rutenbar showed [5], the task of circuit 

sizing is placed at the lowest level of design hierarchy, 

where the design parameters (sizes and biasing off all 

devices) have to be determined so that the circuit 

performances meet the specified design requirements. 

This mapping from design requirements into proper, 

preferably optimal device size and biasing, in general 

involves solving the set of physical equations that relate 

the device sizes to the electrical circuit performances. 

Solving these equations explicitly is in general not 

possible so two basic alternatives are used: the 

knowledge-based approach and the optimization-based 

approach. In our paper we shall focus only on the latter 

approach optimization-based approach the circuit 

performances are written as objective functions to be 

maximized (minimized). So we face a multiobjective 

optimization problem (MOP). Solution of multiobjective 

problem are known as noninferior or Pareto-optimal 

points [6], [7]. 

A global noninferior or Pareto-optimal point is, 

generally speaking, a point x in the feasible space so that 

there is no other point x′ in that space with superior values 

for all the objective functions (in the case of objective 

maximization). The definition of a local noninferior point 

is similar, except that it would consider a neighborhood of 

x (for a rigorous mathematical definition, see [7]). Any 

method for solving a MOP must be able to generate a set 

of noninferior solutions [6].  

One way to solve the MOP is the Goal Attainment 

method of Gembicki that uses a set of design goals 

associated with the set of objective functions  [7]. An 

alternate procedure for dealing with multiobjective 

optimization is to simultaneously optimize all the 

objectives. 

The idea of using fuzzy techniques in analog design 

optimization can be met in some previous papers. In [4] 

and [8] fuzzy sets are used to represent fuzzy meanings of 

the design requirements and constrains.  This way crisp 

objectives are transformed into fuzzy.The membership 



function is regarded objectives as a degree of fulfillment 

of the associated fuzzy objectives. Then the optimization 

problem consists in maximizing a weighted sum of these 

degrees of fulfillment. 

In [9] fuzzy sets are used as an error measure between 

the design requirements and circuit performances. This 

error measure is called unfulfillment degree of 

requirement (UDR) and the optimization problem consist 

in minimizing each of these UDRs. Moreover the 

optimization method itself uses fuzzy systems to find the 

new parameters value in each iteration. For every design 

parameter a zero order Takagi-Sugeno fuzzy system (that 

incorporate the performances-parameters global 

qualitative dependencies) compute a coefficient to modify 

it, depending on all UDRs. Two drawbacks affect this 

approach: first, the performance function should be 

monotonous and second, the method can find only a local 

noninferior solution instead of a global one. 

A new multiobjective optimization method based on 

fuzzy logic is proposed in this paper. The new method 

uses a populations of solutions to find a set of local Pareto 

optimal points from which we can choose the most 

suitable one; this way we increase very much the 

probability of finding the global Pareto optimal point. In 

order to accurately find the local Pareto optimal points we 

use quantitative information of the local gradient to 

compute new parameter values. The design requirements 

are fuzzified using fuzzy sets, so that the optimization 

problem has fuzzy objectives. We will use the 

unfulfillment degrees of the requirements (UDRs) as a 

measure of the objective achievement. Also, the strategy 

to compute new parameter values benefits by one of the 

advantages offered by fuzzy logic: accurate and simple 

acquisition of the human expert knowledge and thinking. 

The reminder of this paper is organized as follows: 

Section 2 describes the proposed optimization method 

with population of solutions idea and the strategy to 

compute new parameter values. Section 3 briefly presents 

the implementation of the method and the results obtained 

by optimizing the design of a basic BJT amplifier. Finally 

section 4 presents some conclusions. 

 

II. THE FUZZY OPTIMIZATION  

METHOD 

The optimization method should be chosen so that it 

converges to a global optimal solution in a reduced 

number of iterations. This is not a simple task due to the 

complex relations between design parameters and circuit 

performances. A parameter affects more than one circuit 

performance at the same time so when it is modified in 

order to improve a performance it can damage another. 

 

A. The idea of population of solutions 

Starting the optimization with only one initial solution, 

we can remain blocked into a local Pareto optimal point, 

where an improvement in one objective requires a 

degradation of another. If we can obtain a set of local 

Pareto optimal points it is highly possible to have the 

global Pareto optimal point among them. 

So, instead of using one search path we suggest using 

a parallel search dealing with the idea of population of 

solutions consisting of candidate solutions. The 

optimization starts with the initial candidate solutions. 

These initial candidate solutions can be obtained in 

several ways: randomly generated, computed with 

approximate design equations, etc. 

At each iteration, for every candidate solution the 

performances, the UDRs and new parameter values are 

computed. If the UDRs for one candidate can not be 

decreased anymore, we have found a local Pareto optimal 

point and the future iterations will not visit this candidate 

solution, shortening the entire optimization time. 

The optimization algorithm stops in one of the 

following situations: 

i) all the UDRs become zero for one candidate 

solution. This candidate solution is considered a 

global Pareto optimal point and it is our final optimal 

solution. We will not continue to search other Pareto 

optimal point on the remaining search paths. 

ii) none of the candidate solutions can be further 

improved, meaning that the set of local Pareto optimal 

points was obtained. 

As the final optimal solution we chose the one with 

the minimum value of the mean of unfulfillment degrees 

of requirements (MUDR), considered as global optimal 

point. 

 
B. New parameter values computing 

The method for computing the new values for the 

design parameters involves fuzzy techniques and local 

gradient information. 

Generally speaking each design parameter can affect 

more or less each circuit performance. In our method the 

sign and the value to modify a certain parameter takes 

into account the UDRs, the gradients and the relative 

importance (weight) of the involved parameters in 

relations with the circuit performances. 

Our method acts as a human expert for a certain 

circuit performance: 

 it is better to modify more the parameter with 

greater weight, because it can really affect the 

performance, and the modification also depends on 

the unfulfillment degrees of the corresponding 

requirements. 

 the parameter with lower weight is modified less 

or not at all, because its influence on circuit 

performance is insignificant. 

 the final modification of a parameter is a weighted 

sum of the partial modification (imposed by every 

performance function). 



 

To explain the way new parameter values are computed 

let us consider the notations: 

Such human expert knowledge is captured and 

incorporated in our method by means of a fuzzy logic 

system. 

Pk – the kth performance function, N,1k   

xi – the ith design parameter, M,1i   

In each iteration: 

i) Compute the local gradients of the performances in 

relation with each design parameter 

 ik xP - the local gradient of Pk performance in 

relation with xi parameter.  

ii) For every performance Pk we compute the 

weights  iP xw
k

 that shows the relative importance 

of every xi in modifying the performance Pk. These 

weights are computed based on absolute values of 

the local gradients: 
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iii) For every circuit requirements rk compute the UDRk 

as a membership degree of the actual value of the 

corresponding performances Pk
* to the associated 

fuzzy objectives.An example is shown in Fig.1.a) for 

with rk”. A value UDR=0 means a fully achievement 

of the fuzzy objectives, while UDR=1 means the 

fuzzy objective is not achieve at all.  is a factor in 

(0;1) domain that can control the UDR  via the shape 

of the fuzzy sets that define fuzzy objectives. the 

fuzzy objective “Pk greater or equal with rk” and in 

Fig.1.b.) for the fuzzy objective “Pk less or equal  

iv) For every parameter xi and every performance Pk we 

compute a partial coefficient to modify the 

parameter. This partial coefficient coefxi(Pk) is 

computed by first order Takagi-Sugeno fuzzy 

system (Fig. 2.)  
 

The fuzzy sets for the input linguistic variables 

“UDR” and “weight” are presented in Fig.3. and for 

the output linguistic variable part_coeff in Fig.4. 

The fuzzy rules are presented in Table 1. where, for 

example the 4th column and the 2nd  row give the 

following fuzzy rules: 
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            Fig.1 Computing UDRK for fuzzy objective: 

a) “PK greater or equal with rK ”; b) “PK less or equal with rK ” 
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Fig.2 Partial coefficient computing 

 WR(xi) 



“If  UDR is Large and weight is Small then part_coeff is 

Medium”. 

 

 

v) The partial coefficients )(Pcoef kxi
 receive a plus 

or minus sign depending on the sign of the local 

gradient and on the direction (go up or go down) in 

which the performance must be modified. So we 

have obtained partial coefficients that have a sign: 

)P(scoef kxi
. 

vi) For every parameter xi we compute the weights 

 kx Pw
i

 that show the relative importance of every 

performance Pk to compute the modification of xi 

parameter.  
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vii) The coefficients used for modifying each parameter 

are computed as weighted sum of the partial 

coefficients, the weight being  kx Pw
i

. It means 

that the greater the weight is, the greater the 

influence on the partial coefficient. 
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viii) Compute new parameter values of the design 

parameters:  

 

  (4)                               xscoef1x ixi i
  

 
Finally we should mention that the optimization 

method acts in an adaptive manner: when the UDRs are 
large (towards 1) we have large coefficients to modify the 

parameters (see Table 1). For small UDRs we have small 

coefficients to modify the parameters, so we can focus our 

search so that the solution converges to the exact local 

Pareto optimal point. 

 
III. IMPLEMENTATION AND RESULTS 

In order to evaluate our multiobjective optimization 

algoritm we implemented a prototype system in Matlab 

for Windows. The prototype consist on a main function 

“optfuzz” and other secondary function. The main 

function should be invoke from Matlab workspace with a 

series of arguments: optfuzz (`fun`, reqs, sign, ub, lb). 

 fun – a string containing the name of the Matlab 

function that computes the objective functions; 

 reqs – vector of numerical values of the 

requirements; 

 sign – vector with +1 or –1 values, with the same 

length as reqs vector. When the            values is +1  

“optfuzz”  attempt to make  the objective  function  

greater or equal  to corresponding requirements. 

When the value is –1 “optfuzz” attempt to make the 

objective function less than the corresponding 

requirements; 

 ub – a vector of upper bounds of the parameters; 

 lb – a vector of lower bounds of the parameters. 

Also, we can set some options: number of iterations, 

number of candidate solutions and  factor (see Fig.1). 

The initial values of the parameters are randomly 

generated for each candidate solution. 

The user should only write his objective functions and 

run the “optfuzz” with the arguments show above. The 

optimization routine return the final values of objective 

function, the values of the parameters, the UDR for each 

requirements and a curve with the evolution of MUDR 

during the optimization for the candidate solution that 

provide final solution. 

Using our multiobjective optimization based on fuzzy 

logic we designed a common-emitter amplifier presented 

in Fig. 5. 
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   Fig. 5. Common-emitter amplifier 

 

UDR 

weight 

Z - Zero 

S 

M 

L 

S M L 

Z S M 

L M S 

S L VL 

S - Small 

M - Medium 

L - Large 

VL - Very Large 

Table 1. The fuzzy rules 



Table 2. 

Require 

ments 

(set I) 

Candidate       solutions 

1o 2o 3o 4o 5o 

  Perf. UDR   Perf. UDR   Perf. UDR   Perf. UDR   Perf. UDR 

Ri  2 k 1.829 0.091 1.822 0.099 1.823 0.097 1.798 0.127 1.822 0.099 

Ro1.2 k 1.321 0.126 1.316 0.118 1.318 0.121 1.302 0.09 1.318 0.121 

Av  150 139.34 0.0002 149.5 0.0001 149.53 0.001 149.75 0.00004 149.65 0.00007 

B 20 kHz 42.28 0.0 42.36 0.0 42.32 0.0 42.66 0.0 42.31 0.0 

  0.0544  0.0542  0.0545  0.0544  0.0549 

                                                Table 3. 

 

Parameters 

Candidate solutions 

1o 2o 3o 4o 5o 

R2 [k] 67.522 66.689 66.791 62.103 66.369 

RE [k] 2.159 2.134 2.138 2.021 2.128 

RC [k] 1.366 1.362 1.363 1.347 1.363 

 

                                                                     Table 4 

 set II set III 

Requir Perform MUDR Requir Perform MUDR 

Ri [k] >1.8 1.805 0 >2.5 2.502 0 

Ro [k] <0.7 0.621 0 <0.15 0.126 0 

Av >70 71.324 0 >9.8 9.831 0 

B [kHz] >90 91.058 0 >500 504.139 0 

 

We consider four performance functions: input 

resistance Ri; output resistance Ro; passband gain Av; 

bandwidth    B. As design parameter we consider three 

resistors: R2, RE and RC. The dependencies of 

performance functions on design parameters are 

expressed by analytical equations. 

We try to optimize the design of the amplifier for the 

set of requirements (set I) presented in Table 2. The 

optimization was run for a population of five candidate 

solutions, namely 1o…5o. The results: final performances, 

UDR and MUDR are also presented in Table 2.  

The final parameter values for each candidate 

solutions form a set of local Pareto optimal points and 

they are presented in Table 3. 
As the final solution (global Pareto optimal points) we 

choose the one with the smallest MUDR. So, our final 

solution is the one provided by candidate solution 2o 

withMUDR=0.0542. For this solution the requirement for 

B is fully realized, for Av almost realized while for Ri and 

Ro are less realized. This means that our requirements are 

competitive and cannot be fully achieved concurrently 

We optimize the design for another two sets, set II and 

set III, of design requirements presented in Table 4. Also 

in Table 4 we present the final performances and MUDR 

for both sets of requirements. The design optimization is 

successfully, all the requirements being fully attained. In 

both cases we use a population of  5 candidate solution. 

The evolution of the MUDR for all five candidate 

 solutions from set II are presented in Fig. 6. 

We can see that the MUDR are improved during 

optimization, for all candidate solutions. The optimization 

is stopped when the MUDR for one candidate solution 

reaches the zero value, means that all the requirements are 

fully achieved. This candidate solution (4) gives the final 

solution. Fig. 7 and Fig. 8 show the evolutions of MUDRs 

for candidate solutions that give final solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 5 we present the initial and final values of the 

design parameters for candidate solutions that gives the 

final solution in set II and set III. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

 Parameters set II set III 

initial final initial final 

R2 [k] 61.846 67.618 38.451 55.215 

RE [k] 2.792 2.125 3.087 2.858 

RC [k] 0.483 0.631 0.411 0.127 

Fig. 6. Evolution 

of MUDR 

for candidate 

solutions in set II. 

Fig. 7. Evolution of 

MUDR in set II. 



 

 

 

 

 

 

 

 

 

 

 

 

 

For a better appreciation of our fuzzy multiobjective 

optimization method we compare our results with the 

ones obtained using another multiobjective optimization 

method: Goal Attainment method of Gembicki from the 

optimization Toolbox of Matlab “fgoalattain” [10]. Since 

this method requires an initial starting points we use the 

same starting point as for the “optfuzz” presented in Table 

5. The results obtained with “fgoalattain” are show in 

Table 6. 
Table 6 

 set II set III 

Requir Perform MUDR Requir Perform   MUDR 

Ri [k] >1.8 1.841 0 >2.5 2.480 0.00079 

Ro [k] <0.7 0.684 0 <0.15 0.151 0.00079 

Av >70 71.609 0 > 9.8 9.771 0.00079 

B [kHz] >90 85.034 0.038 >500 437.332 0.19636 

We should mention that we use the same performance 

functions, the same Matlab version and the same 

computer. Because the “fgoalattain” do not compute 

UDR, we made those calculations for final performances.  

Some compative results can be seen in Table 7. 

Table 7 

 set II set III 

Optimization 

method 

optfuzz fgoalattain optfuzz fgoalattain 

MUDR 0    0.0095 0    0.0496 

Iterations 13 66 75 113 

CPU time [s]    2.06     3.08 8.73 6.11 

We can see that our method find better final solutions 

(MUDR=0) than “fgoalattain” (MUDR=0.0095 or 

0.0496). Also, the number of iterations is smaller for our 

method while the and the CPU time is comparable for the 

two methods. The “optfuzz” method also has the 

advantages of a very large chance to find the global 

optimal solution compared with “fgoalattain” that can be 

trapped into a local solution. 
 

IV. CONCLUSION 

In this paper a new multiobjective optimization 

method for analog circuits design using fuzzy logic has 
been introduced. Fuzzy sets were used to define fuzzy 

objectives and a fuzzy system that incorporates human 

thinking contributes to compute new parameters values. 

The method really allows optimization of several 

objectives simultaneously because the modification of the 

parameters is a function of the unfulfillment degrees of all 

the requirements. 

The results obtained after optimizing the design of a 

common-emitter amplifier show that our method works 

very well. Due to the population of solutions we find a set 

of local Pareto optimal points and the point with 

minimum MUDR is chosed as a final optimal solution. 

The method has a very large chance to find the global 

optimal solution due to its multiple search path. Also in 

the proximity of the final solutions the method works well 

to continue decrease MUDR up to the local Pareto 

optimal points. The quality of each final solution is very 

high. This is possible because the method uses local 

gradient information and works in an adaptive manner: 

while the UDR decrease, the step in the parameter 

modification also decreases. 

Compared with other multiobjective optimization method 

(“fgoalattain”) our method prove to be superior in some 

aspects: better quality of final solutions, smaller number 

of iterations; higher chance to find a global solution. 
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