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Original band (O-band): 1260 to 1360 nm
Extended band (E-band): 1360 to 1460 nm
Short band (S-band): 1460 to 1530 nm
Conventional band (C-band): 1530 to 1565 nm
Long band (L-band): 1565 to 1625 nm
Ultralong band (U-band): 1625 to 1675 nm
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Budget flux equation
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Figure 6.2 Causes of loss in an optical fiber.
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Equations
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Equations

NA’ n—n’ n,-n
B e for A<<1
2n;  2n; 1,
a = core radius [um]
NA = numerical aperture
A = wavelength [um]
k = number of light wavelengths per 27 units of length.
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Nonlinear effects

Fiber nonlinearities fall into two categories

stimulated scattering
refractive index fluctuations

Stimulated Brillouin Scattering, SBC

Stimulated Brillouin scattering is an interaction between light and acoustic waves
m an optical fiber. Some of the forward propagating light is redirected backwards
thereby stealing power from the forward propagating light, thus reducing the -
power that can be delivered to the receiver. SBC arises at an input power level *
from 6-20 dBm.

Stimulated Raman Scattering, SRS

Stimulated Raman scattering is an interaction between light and the fiber's
molecular vibrations. The SRS scatters light in both in the forward and backward
direction, the backward propagating power can be eliminated by the use of an '
optical isolator. SRC arises at an input power level above 27 dBm, close to 1 W. *

Self Phase Modulation, SPM t
Self Phase modulation describes the effect an optical pulse has on its own phase.
The edge of an optical pulse represents an intesity that is time-varying thus
mnplicating a time-varying refractive index. The varying refractive index
modulates the phase of the transmitted wavelength(s), this broadens the
wavelength spectrum of the transmitted pulse. If sufficiently severe, this '
broadening may overlap into adjecent channels in DWDM systems. SPM arises
at an input power level above 5 dBm. :

Craoss Phase Modulation, CPM

Cross Phase modulation originates the same way as SPM. Whereas SPM relates
to the effect that a pulse has on itself, CPM describes the effect that a pulse has on
the phases of pulses m other channels. SPM may occur both m single- and multi-
channel system and CPM will only occur in multi-channel systems. CPM arises at -
an input power level above 5 dBm.

Four-Wave Mixing, FYVM

One of the most troubling of the nonlinear effects is the four-wave mixing. It occurs

when multiple signals co-propagate, they mix to produce additional channels that
can steal power from and overlap with the original signals. :

SBS — interactiune lumina- unde
acustice

* SRS —interactiune lumina cu vibratiile
moleculare ale materialului
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polarizare KERR - > variatia indicelui
de refractie cu intensitatea -> efect:
induce defazaj in faza (phase shift)

A =nt
http://www.rp-photonics.com/seli_phase modulation.html
- CPM - se datoreaza efectului de
polarizare KERR -> efect: o lungime
de unda poate afecta faza unei alte
unde cu o alta lungime de unda
An® = 2p O
«  FWM — mixaj 4 unde care se propaga-

> zgomot _
http://www.rp-photonics.com/kerr effect.html



http://www.rp-photonics.com/self_phase_modulation.html
http://www.rp-photonics.com/kerr_effect.html

Rayleight scattering
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Figure 6.13 Inhomogeneities in a glass fiber produce refractive index variations that act as
scattering centers for Rayleigh scattering.
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Figure 6.14 Dispersal of light produced by Rayleigh scattering.



Light scattering along the fiber
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Figure 6.10 Pictorial representation of scattering mechanisms (elastic and inelastic).
Rayleigh scattering is caused by index varnations. There is no energy transfer, which defines
an elastic collision. Raman/Brillouin scattering is caused by molecular vibrations. There is an
exchange of energy which defines an inelastic collision.
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Stokes and Anti-Stokes

D. Krohn et al, Fiber Optic Sensors, SPIE, 2014
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Figure 6.11 Energy-evel representations for the emission of Stokes and anti-Stokes
scattering components.



Silica fiber
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Figure 6.12 Pictonal representation of the scattering emission spectrum in a silica fiber.



Cables-Temperature influence
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Budget flux equation

L 0sses e fiber-related losses

¢ losses related to the material in connectors and splices.

e Mode field difference

e Different numerical apertures (NA)

o Dafferent core diameters

e Different cladding diameters

¢ Non-circulanty of core and/or cladding
¢ Core/cladding non-concentricity.

Ex: MFD difference
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Fiber splicing
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Figure 13.6. Portable OTDR for making measurements in the field. (Model FTB-400, photo pro-
vided courtesy of EXFO; www.exfo.com.)



The content of this talk ranges from physical concepts
to applications

The scattering effects are the physical
phenomenon that will be
detected/quantified/treated by every sensing

systems presented in the applications.
Backscattered signal (Eg, w’)

Signal measured for distributed sensing
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First objective: description of the basic physical principle
of scatterings in optical fibres (Rayleigh, Brillouin, Raman)
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The content of this talk ranges from physical concepts

to applications

! ! !

Rayleigh Brillouin Raman
- Monitoring for Brillouin reflectometer  Temperature
telecommunication for temperature and sensing
purposes (OTDR) strain sensing

- -OTDR (Phase-
OTDR) for intrusion
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system

and vibration sensing

Distributed measurement

Parameter

ava |

Second objective: introduction to measurement using
scattering effects
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Scattering results from light-matter interactions

— A monochromatic electromagnetic wave interacts with the
medium particles by stimulating the atomic electrons to
oscillate

— The electrons radiate in the manner of elementary electric
dipoles

From R. Resnick and D. Hallyday, Ondes, opthue et physique From http://www.vis.uni-
moderne, Editions ERP, 1980 stuttgart.de/ufac/dipole/
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