Emitters – LASERs and LEDs

Curs 6

Light Sources and Transmitters

Bibliografie: Gerd Keiser, Optical Communications Essentials, 2004, McGraw-Hill

CONTENTSWHAT IS Emitters (LED, LASER)?

- LED light-emitting diode (pag77-Kasap)
- LASER –light amplification by stimulated emission of radiation
- LED/Laser operating
- LED/Laser types
- LASER OSCILLATION CONDITION
 - Unity loop-gain condition (threshold condition)
 - Population inversion
- EXAMPLES OF LASERSReference

Diferente emisia spontana (LED) si emisia stimulata (Laseri)

- SLED• Burrus type surface emitting LED
- ELED• Edge emitting LED
 - Planar LED
 - Dome LED. https://www.gnc-systems.com/userfiles/5.pdf

LED - emisia spontana (fluorescenta)

Referinte bibliografice: Gistwik – Optical Communications – cap 6 si Optoelectronics – Borge Vinter–Cambridge press IBM– Introduction to optical communications Kasap – Optoelectronics and Photonics– cap 4

Fig. 6-22 A laser of the simplest design. This type of laser - generally known as Fabry Perot laser - has only one p-n junction. For this reason it is called a homojunction laser.

Nivele Fermi

LED

Fig. 6-17 Spontaneous emission.

INITIAL STATE FINAL STATE (A) Spontaneous emission. INITIAL STATE FINAL STATE STIMULATING WAVE (B) Stimulated emission.

Figure 2-7. Spontaneous and stimulated emission.

Laser

Fig. 6-18 The incident photon stimulates an electron transition that emits a photon with characteristics identical to those of the incident photon.

Figure 3-1. Energy levels in a three-level laser.

Inversiunea de populatie

Echilibru

Output Spectrum

Tipuri de LED-uri

Fig. 6-29 Burrus type LED with an etched groove to minimize absorption in the n-layer of GaAs.

Fig. 6-30 The radiation lobe is an ellipse with an opening of around 115 - 125° in horizontal direction and 25 - 35° in vertical direction.

Surface Emitter LED(SLED)

Edge Emitting LED (ELED)

Dome LED

COB

PureLifi: https://www.youtube.com/watch?v=SqtQsfe3i64

LIFI

LASER COMPONENTS

LASER- Light Amplification by Stimulated Emission of Radiation

Fabry-Perrot condition

He-Ne Laser

ROUND TRIP IS 2 WAVES.

ROUND TRIP IS ONE WAVELENGTH.

ROUND TRIP IS 4 WAVES.

Power Increase = Lost Power + Output Power

Figure 3-6. Light waves are resonant if twice the length the laser cavity equals an integral number of wavelengths.

$N\lambda = 2L$

LASER examples

Buried heterojunction (BH), Ridge (RH)

Fig. 6-24 Heterojunction laser diodes. Top left and right: two different types of BH laser diode - one planar and the other non-planar. Bottom: a ridge laser diode.

V-groove

Fig. 6-25 Integrated laser chip with fixed fiber, lens system and monitoring detector.

Fibre active

Schema echivalenta

Referinta – Fundamentals of Photonics – Bahaa Saleh

Oscillation condition:

- An amplifier with a gain-saturation mechanism
- A feedback system
- A frequency-selection mechanism
- An output coupling scheme

Modurile de oscilatie a unui laser

Modes- each frequency resonates on a different path within the cavity.

- axial or longitudinal modes (fig a.)
- transverse modes (fig b.)

Longitudinal Modes

Lateral Modes

Inversiunea de populatie

Fig. 4.9. The maximum number of modes which may be supported in a cavity is given by the ratio of the spectral bandwidth to the modal frequency spacing.

Referinta - Optoelectronics, p139

trip. (b) Wavefronts in a self-replicating wave (c) Four possible modes low order transverse cavity modes and their fields. (d) Intensity patterns in the modes of (c). (For rectangular symmetry.)

Check of the laser diode operation: 1D cavity modes

Summary – Basic Laser

Source light
 Reflective Mirrors (cavity)
 Gain Media

 Energy Level Structure
 Population Inversion

Laser light properties

- Monochromatic
- Temporal and spatial coherence
- High light intensity
- Short Pulse duration (fsLaser)
- Spectra :
- Far infrared (IR) (10-1000 micro m)
- Middle IR (1–10 micro m)
- Near IR -(0.7-1 micro m)
- Visible (V) (400–700nm)
- Ultraviolet (UV) (200–400nm)
- Vacuum ultraviolet (VUV) (100–200nm)
- Extreme ultraviolet (EUV) (10–100nm)
- Soft X-ray (20–30nm)

Parametrii tehnici

- Spectral width
- Linewidth
- Coherence time and length
- Power
- Operating wavelength
- Wavelength (frequency) stability
- Switching time and modulation
- Tuning range and speed

Spectral width (FWHM)-

It is a fact that most simple semiconductor lasers do not produce a single wavelength of light. They produce instead a range of wavelengths. This range of wavelengths is called the "spectral width" of the laser. This seems to contradict the basic principle of laser operation. However, it is not so. In a semiconductor laser, a mirrored cavity is used to build up the light. By mechanical necessity, the cavity is long enough for several wavelengths to be produced It is interesting that these different wavelengths (modes) are not produced simultaneously – or rather their strength varies widely. So spectral width is usually quoted as the FWHM (Full Width Half Maximum). FWHM is measured between the points on the curve where power has decayed to one half of the peak. Thus in some contexts it is also called the "3–dB point".

Importance:

- 1. FWHM hight-the more dispersion the signal will suffer when travelling on the fibre
- 2. FWHM mic-maximizare WDM channel
- 3. FWHM mic efecte neliniare (SBS stimulat ed brillouin scattering) nedorite
- 4. FWHM efect asupra tehnicilor de modulatie

Linewidth A particular laser line is emitted at a very specific wavelength corresponding to one mode (light path) in the laser's cavity. Over time this wavelength varies somewhat around a center w avelength (the amount of variation is the linewidth)

Figure 70. Spectral Width and Linewidth. These are usually measured as the width at half the maximum signal amplitude. That is at FWHM (Full Width Half Maximum).

Instead of producing a continuous range of wavelengths o ver their spectral width, semiconductor lasers produce a series of "lines" at a number of discrete wavelengths. Lin es themselves vary in width (in different types of lasers) very significantly. The linewidth is inversely proportional t o the coherence length of the laser.

http://www.rp-photonics.com/linewidth.html

Temporal and spatial coerence (IBM)

- The length of time that coherence is maintained is called the "coherence time".
- The length that the signal could travel in a vacu um during that time is called the coherence leng th.
- Ex: LED coherence time half a picosecond an d its coherence length is around 15 microns LASER – good quality, narrow linewidth – coh erence time of perhaps a microsecond and a co herence length of up to 200 meters.

Length_{coherence} = $c \times \text{Time}_{coherence} = \frac{\lambda^2}{\Lambda^2}$

Coherence

- Another important consideration in the study of lasers is the interaction of two electromagnetic waves that have only slightly different frequencies (coerenta temporala), or that originate from points only slightly separated spati ally (coerenta spatiala) – for example, two closely locat ed but separate laser beams or a single beam illuminatin g two closely positioned apertures. In such instances the two distinct waves or beams will interfere with each other to produce, in some cases, very dramatic effects.
- When the waves do not interfere incoherent
- Exista si partial coerent exista o oarecare interferenta

Coerenta temporala-Lungime de coerenta(Ic)

Power

- Operating wavelength material used for lasing and ge ometry of the laser cavity
- Wavelength (frequency) stability wavelength variaza c u temperatura n(t) – important in WDM techniques, eac h laser must keep within its allocated wavelength
- Switching time and modulation how fast they can op erate-> tehnici de modulatie (OOK, FSK), altfel modula tor extern (external modulator to be placed into the ligh t beam after it is generated)
- Tuning range and speed sisteme WDM switched be tween different wavelengths (channels). Tunable lasers are seldom capable of continuous tuning over an unbr oken range of wavelengths. When they are tuned they " jump" from one wavelength to another (corresponding to the resonance modes of the laser cavity)

Laser operation

- CW continuuPulses
- Intern cavity
- Extern cavity
- Below treshold
- Just above treshold
- Full power

- Laser types
 - gas laser
 - solid laser
 - semiconductor laser
 - dye laser

Pulse lasers

Gain switching

Q-switching

Q-switching operating

Figure 14.3-6 Operation of a *Q*-switched laser. Variation of the population threshold N_t (which is proportional to the resonator loss), the pump parameter N_0 , the population difference N(t), and the photon number n(t).

Cavity dumping

Laser types (IBM)- Generating Pulses

- Semiconductor Laser diodes
- Fabry-Perrot
- DFB (distributed feedback laser)
- Q-switching
- Mode Locking
- DBR (distributed bragg reflector laser)
- Quantum-weels
- Tunable Laser (DBR)
- Multi-Wavelength
- VCSEL (Vertical cavity surface emitting lasers)
- Fibre ring Lasers
- Double pumping/free electrons

Mode-locking

Figure 14.3-9 Intensity of the periodic pulse train resulting from the sum of M laser modes of equal magnitudes and phases. Each pulse has a width that is M times smaller than the period T_F and a peak intensity that is M times greater than the mean intensity.

Figure 14.3-10 The mode-locked laser pulse reflects back and forth between the mirrors of the resonator. Each time it reaches the output mirror it transmits a short optical pulse. The transmitted pulses are separated by the distance 2d and travel with velocity c. The switch opens only when the pulse reaches it and only for the duration of the pulse. The periodic pulse train is therefore unaffected by the presence of the switch. Other wave patterns, however, suffer losses and are not permitted to oscillate.

In fiber

Fibra activa

-EDFA -Raman

Hybrid Distributed Raman (DRA) - EDFA Amplifier Link

Uses Raman amplification in a 85-km transmission fiber, followed by a 2-stage doped fiber amplifier. The 2-stage amplifier uses 1480-nm forward pumping in both stages, and includes a mid-stage gain flattening filter.

LASER OSCILLATION CONDITION

Unity loop-gain condition

\rightarrow threshold gain

 required minimum gain for laser action and the gain under steady state laser operation (Amplification = Loss)

Population inversion

: necessary but not sufficient condition for laser action (additional gain needed to overcome the loss)

Operates

LASER OSCILLATION CONDITION

Threshold condition

round trip gain (or loop-gain)
 G = <u>irradiance after a round trip</u>

initial irradiance

- G>1 : oscillation grows initial stage of the laser action
- G=1 : threshold condition steady oscillation
- G<1 : oscillation die out

CW LASER OSCILLATION CONDITION

Oscillation Condition: Threshold Gain & Lasing Wavelength

CW LASER OSCILLATION CONDITION

Laser losses

□ transmission at the mirrors \rightarrow output : mirror loss

 \rightarrow the other mirror highly reflective

- absorption and scattering at the mirrors
- diffraction loss at the laser mirrors due to the finite size of the mirrors

 \rightarrow part of radiation spread out beyond the mirror edge

 \rightarrow use of concave mirrors to reduce the diffraction losses

absorption in the laser medium by transitions other than the desired one

CW LASER OSCILLATION CONDITION

Unity loop-gain condition

\rightarrow threshold gain

 required minimum gain for laser action and the gain under steady state laser operation (Amplification = Loss)

Population inversion

: necessary but not sufficient condition for laser action (additional gain needed to overcome the loss) 효과적인 population inversion을 위해선 4-level system이 적합함

Mode-Locking Methods

- Active Mechanical Shutters
 Acousto-Optic Switches (low gain lasers)
 Synchronous Pumping
- Passive
 Colliding Pulse
 Additive Pulse
 Kerr Lens

Wikipedia – tipuri de laseri

Laser types- Examples

Typical Helium–Neon Laser Parameters

Laser wavelengths $(\lambda_{\mu l})$ 632.8 nm 543.5 nm Laser transition probability (A_{ul}) $3.4 \times 10^{6}/s$ 2.83×10^{5} /s 3×10^{-8} s Upper laser level lifetime (τ_{μ}) $3 \times 10^{-7} \text{ m}^2$ $2 \times 10^{-18} \text{ m}^2$ Stimulated emission cross section (σ_{ul}) 1.5×10^9 Hz 1.5×10^{9} Hz Spontaneous emission linewidth and gain bandwidth, FWHM (Δv_{ul}) (Doppler) $5 \times 10^{15} / m^3$ Inversion density (ΔN_{ul}) Small-signal gain coefficient (g_0) 0.15/m Laser gain-medium length (L)0.1-1.0 m Single-pass gain $(e^{\sigma_{ul}\Delta N_{ul}L})$ 1.015 - 1.16Gas pressure 2.5 Torr Gas mixture He: Ne at 5:1 Index of refraction of gain medium ≈ 1.0 Pumping method electrical discharge Electron temperature 15,000-20,000 K Gas temperature 400 K Mode of operation CW Output power 0.5-100 mW TEM₀₀ Mode

Typical Argon Ion Laser Parameters

Laser wavelengths (λ_{ul}) most often used	488.0 nm	514.5 nm
Laser transition probability (A_{ul})	7.8×10^{7} /s	
Upper laser level lifetime (τ_u)	1.00×10^{-8} s	
Stimulated emission cross section (σ_{ul})	$2.6 \times 10^{-16} \text{ m}^2$	
Spontaneous emission linewidth and		
gain bandwidth, FWHM (Δv_{ul})	$2.7 \times 10^9 \text{ Hz}$	
Inversion density (ΔN_{ul})	$2 \times 10^{15} / m^3$	
Small-signal gain coefficient (g_0)	0.5/m	
Laser gain-medium length (L)	0.1–1.0 m	
Single-pass gain $(e^{\sigma_{ul} \Delta N_{ul}L})$	1.05-1.65	
Gas pressure	0.1 Torr or less in bore region	
Index of refraction of gain medium	≈ 1.0	
Pumping method	electrical dischar	ge
Electron temperature	20,000–30,000 K	
Gas temperature	1,200°C	
Mode of operation	cw	
Output power	put power 100 mW to 50 W	
Mode	TEM ₀₀ or multi-mode	

Typical Helium-Cadmium Laser Parameters

					anan Brun (a
Laser wavelengths (λ_{ul})	441.6 nm	353.6 nm	325.0 nm	Laser tran	sition prob
Laser transition probability (A_{ul})	$1.4 \times 10^{6}/s$	$1.6 \times 10^{5}/s$	$7.8 \times 10^{5/s}$	Upper lase	er level life
Upper laser level lifetime (τ_u)	7.1×10^{-7} s (² D	$P_{5/2}$), 1.1×10^{-6} s	$(^{2}D_{3/2})$	Stimulated	d emission
Stimulated emission cross section (σ_{ul})	$9 \times 10^{-18} \text{ m}^2$			Spontaneo	ous emissio
Spontaneous emission linewidth and				gain	bandwidth,
gain bandwidth, FWHM (Δv_{ul})	1.1×10^{9} /s	1.4×10^{9} /s	1.5×10^{9} /s	Inversion	density (Δ
Inversion density (ΔN_{ul})	$4 \times 10^{16} / m^3$			Small-sign	nal gain coo
Small-signal gain coefficient (g_0)	0.36/m			Laser gain	n-medium l
Laser gain-medium length (L)	0.25-1.5 m			Single-pas	ss gain (e^{σ_s}
Single-pass gain $(e^{\sigma_{ul}\Delta N_{ul}L})$	1.09 - 1.72			Gas pressi	ure
Gas pressure	5-10 Torr He			Gas mixtu	re
Gas mixture	He : Cd at 100 : 1	l		Index of re	efraction of
Index of refraction of gain medium	≈1.0			Pumping r	nethod
Operating temperature	tube bore 350°C	C, Cd 260°C		Electron	n temperatu
Pumping method	electrical discha	rge		Gas tem	perature
Electron temperature	15,000-20,000 1	K		Mode of o	peration
Gas temperature	300°C			Output po	wer
Mode of operation	cw			Mode	Diode-Pu
Output power	10-200 mW				_
Mode	TEM ₀₀ or multi-	-mode			Waveleng

TABLE 14-4 Typical Copper Vapor Laser Parameters Laser wavelengths (λ_{sl}) 510.5 nm transition probability $(A_{\mu l})$ $2 \times 10^{6}/s$ 5×10^{-7} s laser level lifetime (τ_u) $8.6 \times 10^{-18} \text{ m}^2$ lated emission cross section (σ_{ul}) aneous emission linewidth and

FWHM (Δv_{ul})	2.3 × 109 Hz (Doppler broadening)
N_{ul})	$8 \times 10^{17}/m^3$
efficient (g_0)	6.9/m
ength (L)	1.0–2.0 m
$d\Delta N_{al}L$)	10 ³ -10 ⁶
	40 Torr Ne, 0.1-1.0 Torr Cu vapor
	Ne : Cu at 400 : 1 to 40 : 1
f gain medium	≈1.0
-	electrical discharge
are	10,000-15,000 K
	1,500°C
	pulsed
	1 MW/pulse, 20-kHz rep. rate
10 110 11	A 2017 DE TRANSMENTER

578.2 nm

 $1.65 \times 10^{6}/s$

 6.1×10^{-7} s

 $1.25 \times 10^{-17} \text{ m}^2$

Diode-Pumped Solid-State Lasers

Wavelength	Power	Pulse duration	Repetition rate	Applications
Q-Switched L	asers			
1,320 nm	0.4-1.0 W	5-20 ns	10-20 kHz	memory repair
1,064 nm	1–35 W	5–100 ns	l-100 kHz	resistor trimming, memory repair, marking, solar cell scribing, disk texturing, diamond cutting
532 nm	0.5–20 W	5-70 ns	1-50 kHz	marking, PCB structuring, drilling, cutting
355 nm	0.2–10 W	5-50 ns	15-100 kHz	via hole drilling, stereolithography, silicon marking, silicon dicing
266 nm	0.5-2.0 W	5-30 ns	15-100 kHz	drilling, marking, inspection, wafer processing
Mode-Locked	Lasers			
800 nm	0.5–2 W	100 fs	80 MHz	multiphoton imaging, thin film metrology, optical coherence tomography
800 nm	0.5–1.5 W	100 fs	1–5 kHz	machining of nozzles, photo mask repair
355 nm	0.4-4 W	10 ps	80 MHz	PCB production, printing, FBG production, cutting of foils
cw Lasers				
1,064 nm	5-15 W	$0.1100\ \mu\text{s}$	5-40 MHz	printing
532 nm	2-10 W	N/A	N/A	wafer inspection, disk texturing, image recording, medical
266 nm	0.2-0.5 W	N/A	N/A	wafer inspection, FBG production, DVD disk mastering

TABLE 14-11

Typical Free-Electron Laser Parameters

Laser wavelengths (λ_{ul})	2.48 nm to 8 mm
Fractional laser bandwidth	10 ⁻³ to 10 ⁻⁷
Gain per pass	1-300%
Laser gain-medium length (L)	1–25 m
Pumping method	high-energy electron beam
Electron beam peak current	0.1-800 A
Electron beam energy	200 kV to 1 GeV
Electron beam pulse length	2 ps to cw
Undulator magnet period	5 mm to 0.2 m
Magnetic field strength	0.02-1.0 T
Output power	up to 1 GW (pulsed), up to 10 W (cw)
Mode	TEM 00