

Faculty of Electronics, Telecom and Info Technology

Lecture 1

Optoelectronic Systems for Telecom (SOT)

Associate prof eng Ramona Galatus, PhD Basis of Electronics Department

Outlines

- Course overview
- Economic Impact (Real World)
- Introduction to
 - Photonics and
 - Optical communication
- Photonic applications

Examination rules: SYLLABUS

partly written exam.

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the
						final grade
Course		The level of acquired theoretical		- after 7 courses,		- T, max 10 pts.
		knowledge and practical skills		preliminary exam (oral		20%
				examination) -optional		
				- Summative evaluation		- E, max 10 pts.
				written exam (theory and		60%
				problems) – 14 subjects,		
				one from each lecture (for		
				the students with		
				preliminary exam – 8		
				subjects)		
Applications		The level of acquired abilities		- Continuous formative		
				evaluation		- L, max. 10 pts.
				 practical lab test 		20%
10.4 Minimum	n stand	dard of performance				
The presence	of the	course is considered activity and	d chro	onic absenteeism requires	furth	er verification of
material lost.	Prese	nce in all laboratories, obtaining	a mii	nimum of 4.5 notes in lab	orato	ry activities, and

Lab (L) \geq 4.5 and Essay (E) \geq 4.5 and Exam (T) \geq 4.5 : 0,6E+0,20L+0,20T \geq 4.5

Written score= 10% lecture attending +90% written exam Optical Communication= communication with light signal

Duality of Light

Particle (photons)

Photonics is the science and technology of harnessing light

Photonics and Electronics => **OPTO-ELECTRONICS**

Photonics bears the same relationship to light and photons as

Electronics

does to electricity and electrons

Standard Model of elementary particles. The electron is at lower left. The photon is at upper right.

Standard Model of elementary particles

Electron

- In the Standard Model of particle physics, cap 4: **electrons** belong to the group of subatomic particles called **leptons**, which are believed to be fundamental or elementary particles.
- Electrons have the lowest mass of any charged lepton (or electrically charged particle of any type) and belong to the first-generation of fundamental particles.
- The second and third generation contain charged leptons, the muon and the tau, which are identical to the electron in charge, spin and interactions, but are more massive. Leptons differ from the other basic constituent of matter, the quarks, by their lack of strong interaction.
- All members of the lepton group are fermions, because they all have half-odd integer spin;
- the electron has spin 1/2.
- The positron is symbolized by e+ because it has the same properties as the electron but with a positive rather than negative charge.

Standard Model of Elementary Particles

Modelul standard – Fizica

- Inițial (aproximativ între anii 1950–1975) s-a crezut că particulele din modelul standard stau la baza întregii materii din univers. La ora actuală se știe însă că ele formează numai cca 4,6 % din univers, restul fiind desemnat drept materie întunecată (cca 23 %) și energie întunecată (cca 72 %).
- Modelul standard nu este o teorie completă a interacțiunilor fundamentale, deoarece în prezent el nu reușește să integreze a patra forță fundamentală, gravitația, și de asemenea pentru că este incompatibil cu recentele observații ale oscilațiilor neutrinilor.

Modelul standard

- În prezent modelul standard înglobează un total de 61 de particule considerate fundamentale (fără structură internă), și 3 din cele 4 tipuri de interacțiuni de bază (forțe).
- Particulele fundamentale sunt împărțite în două mari categorii după o proprietate numită spin, și anume
 - fermioni fundamentali (a căror valoare a spinului e un număr fracționar) și
 - bosoni fundamentali (a căror valoare a spinului e un număr întreg).
- Fermionii fundamentali sunt împărțiți în quarkuri și leptoni.
 - Există 6 quarkuri și 6 leptoni, cu tot atâtea antiparticule corespondente; fiecare quark există în trei subtipuri, denumite culori.
- Interacțiunile dintre fermioni sunt mediate prin schimbul unor particule de calibrare (etalonare), bosonii intermediari(en), asociați celor 4 forțe fundamentale.
- Bosonii intermediari sunt:
 - fotonul (corespondent forței electromagnetice),
 - 3 bosoni W+, W- și Z (corespondenți forței nucleare slabe) și
 - 8 gluoni (corespondenți forței nucleare tari).
 - Acestora li se adaugă bosonul Higgs, detectat experimental în anul 2013.

Cele 4 forte fundamentale

	Constantă de cuplaj	Mediatori	Simetrie	Teorie cuantică
Interacțiunea tare	$lpha_s$	gluoni g	SU(3)	Cromodinamica cuantică
Interacțiunea electromagnetică	lpha	foton γ	U(1)	Electrodinamica cuantică
Interacțiunea slabă	$lpha_w$	bosoni W și Z	SU(2)	Teoria cuantică a interacțiunii electroslabe
Interacțiunea gravitațională	$lpha_g$	graviton [?]	[?]	Teoria cuantică a gravitației [?]

Heath Salter- Quantum Electronics, English Press, New Delphi, 2011, ISBN 978-93-81157-29-9

Standard Model of elementary particles Photon

- In the Standard Model of particle physics, cap 5: Cap 5: a photon is an elementary particle, the quantum of the electromagnetic interaction and the basic unit of light
- The modern concept of the photon was developed gradually by Albert Einstein
- In 1900, Max Planck was working on black-body radiation and suggested that the energy in electromagnetic waves could only be released in "packets" of energy. In his 1901 article in Annalen der Physik he called these packets "energy elements".
- The word *quanta* (singular *quantum*) was used even before 1900 to mean particles or amounts of different quantities, including electricity.
- Later, in 1905 Albert Einstein went further by suggesting that electromagnetic waves could only exist in these discrete wave-packets. He called such a wave-packet *the light quantum* (German: *das Lichtquant*).
- The name *photon* derives from the Greek word for light, $\varphi \omega \varsigma$ (transliterated *phôs*), and was coined in 1926 by the physical chemist Gilbert Lewis, who published a speculative theory in which photons were "uncreatable and indestructible". Although Lewis' theory was never accepted as it was contradicted by many experiments, his new name, *photon*, was adopted immediately by most physicists.
- Isaac Asimov credits Arthur Compton with defining quanta of energy as photons in 1927.
- for the explanation of the photoelectric effect, Einstein received the 1921 Nobel Prize in physics.

Optoelectronics – 3rd year of study -> basic concepts

- Optic properties
- LEDs
- Lasers
- Waveguides
- Optical fibers

etc

Advanced Optoelectronics

A generic optical communication system

Photonics21 Executive Board

President: Vice Presidents: Work Group Chairs:	Michael Mertin, CEO Bernd Schulte, COO Malgorzata Kujawins Giorgio Anania, Pres Jaap Lombaers, Mar	JENOPTIK AG Aixtron ka, Warsaw University of Te ident & CEO Aledia naging Director Holst Centre	echnology
Information & Communication	Industrial Produc- tion/ Manufacturing & Quality	Life Science & Health	Emerging Lighting, Electronics & Displays
Alfredo Viglienzoni, Head New Business Development, Product Area IP & Broadband Ericsson	Lutz Aschke, Managing Director LIMO Lissotchenko Mikrooptik	Stefan Traeger, Head of Life Science Business Tecan	Jan Denneman, Head of Sustainability, Standards & Regulations Philips Lighting
Security, Metrology & Sensors	Design & Manu- facturing of Compo- nents & Systems	Photonics Research , Education & Training	
Peter Seitz, Managing Director Hamamatsu Photonics – Applied Research Europe	Mike Wale, Director Active Products Research Oclaro	Roberta Ramponi, Professor Politecnico di Milano	

TOWARDS 2020 – PHOTONICS DRIVING ECONOMIC GROWTH IN EUROPE

Multiannual Strategic Roadmap 2014–2020

PHOTONICS²¹

Net!Works

Next Generation Optical Networks Enabler for Future Wireless and Wireline Applications

White Paper

......Alfredo Viglienzoni Chair of Photonics21 Work Group 1

>Werner Mohr Chair of Net!Works

Contributor	Affiliation	Consortium
Rafid Abbas	WNCC/Brunel University	Net!Works
Seyedreza Abdollahi	WNCC/Brunel University	Net!Works
Hamed Al-Raweshidy (Editor)	WNCC/Brunel University	Net!Works
Marianna Angelou	AIT	Photonics21
Sébastien Bigo	Alcatel-Lucent	Photonics21
Guillermo Carpintero	Universidad Carlos III de Madrid	Photonics21
Saqib Chaudhry	Brunel University	Net!Works
Frank Deicke	FhG-IPMS	Photonics21
Michael Eiselt	ADVA	Photonics21
Ronald Freund (Editor)	FhG-HHI	Photonics21
Sergi Figuerola	i2CAT	Net!Works, CaoN Cluster

November 2011

White Paper on NGON

"Each person will soon have at least a mobile smart phone with the capability of accessing extremely high data rates. This will require more power generation which will have a severe impact on the environment. Therefore the future network is required to be fast, cheap, clean and cognitive (FCCC). To achieve an FCCC network, the wired and wireless networks need to be fully merged to have a transparent and widely seamless network with as much optical fibre close to the end user as possible to reduce power consumption, increase the data rate and reduce the cost of the transmitted and routed bit. "

.....Alfredo Viglienzoni, Ericsson Chair of Photonics21 Work Group 1 – Optical Communication

Optech Consulting Market Research Study 24.1.2017

Europe's age of light!

How photonics will power growth and innovation

Global leadership position in European core photonics segments

"access network by exploiting the vast bandwidth, low loss and dispersion of new types of fibres currently being developed to set up a massive pool of WDM channels at aggregate rates "

Next Generation Optical Networks Enabler for Future Wireless and Wireline Applications

ICT

...Alfredo Viglienzoni, Ericsson .. Chair of Photonics21 Work Group 1 – Optical Communication

BRUSSELS, EU

• Information and Communication Technologies (ICT) will continue to be a key driver for the future economy of Europe as evidenced by the national infrastructure of broadband Internet, mobile communications and web services.

• The ICT infrastructure is now considered in most countries to be part of a Critical National Infrastructure and is the key to future economic growth.

• The ICT sector is directly responsible for 5 % of Europe's gross domestic product, with an annual market value of €660 Billion [1]. However, ICT contributes considerably more to overall productivity growth (20 % directly from the ICT sector and 30 % from ICT investments). As an enabler, ICT plays a vital role in enhancing other sectors' business growth.

• According to the Information Technology and Innovation Foundation, a \$10 Billion investment in broadband networks, in one year, would create almost 500,000 jobs in the US [2]. Europe is home to the world's largest and most successful telecom industry, with 7 out of the 10 largest telecom operators (Telefonica, Deutsche Telekom, Vodafone, Orange, BT, Telecom Italia, Telenor Group) alongside major world telecom manufacturers (Alcatel-Lucent, ADVA Optical Networking, Ericsson, Nokia Siemens Networks and Intune Networks), leading manufacturers of optical components (e.g. <u>Oclaro, u2t, Leoni, and ULM Photonics</u>) and manufacturers of network test equipment (e.g. JDS Uniphase and Agilent).

• Maintaining the strong European leadership in communications is essential for its economy, employment and innovation. Europe's communications industry has the strength to remain competitive and to establish leadership in a new wave of broadband networking technologies and business innovations.

• All this is motivated by the end users' demand for higher bandwidth: Better quality video on smart phones, IP-based television, smart homes with networked appliances, data-hungry business applications and 3D-video conferencing - all of these need data rates which require efficient network infrastructure based on photonic technologies.

[1] Photonics21, "Second Strategic Research Agenda in Photonics, Lighting the way ahead."

[2] R. Atkinson, D. Castro and S. Ezell, "The Digital Road to Recovery: A Stimulus Plan to Create Jobs, Boost Productivity and Revitalize America", Report by the Information Technology and Innovation Foundation, 7 January 2009.

I. Introduction to photonics

An introduction to photonics, its applications, and its impact on economy and society

- 1. What is 'Photonics'?
- 2. Impact of Photonics
 - A. on our daily lives
 - B. on economy
 - C. on society

DOUGLAS C. GIANCOLI

OPTICS

FIFTH EDITION

Eugene Hecht

Serway-Optics -Ray optics -Wave optics

Material	$n=\frac{1}{2}$
Vacuum	1.0000
Air (at STP)	1.0003
Water	1.33
Ethyl alcohol	1.36
Glass Fused quartz Crown glass Light flint	1.46 1.52 1.58
Lucite or Plexiglas	1.51
Sodium chloride	1.53
Diamond	2.42
$^{\dagger}\lambda = 589 \mathrm{nm}.$	

The Nature of Light and the Principles of Ray Optics

of the rainbow depends on three cycle alphonomena discussed in this chapter reflection, refraction, and dispersion. The faint pastulcolored bows beneath the main rainbow are called supernumerary bows. They are formed by furtherfore necbetween rays of fight leaving raindrops below those causing the main rainbow. (John W.evert.4)

 34.1
 The Nature of Light

 34.2
 The Ray Approximation in Ray Optics

 34.3
 Analysis Model: Wave Under Reflection

 34.4
 Analysis Model: Wave Under Refraction

 35.4
 Analysis Model: Wave Under Refraction

 36.4
 Analysis Strinciple

 31.5
 Huggens's Principle

 31.4
 Dispersion

 31.7
 Total Internal

Reflection

898

This photograph of a rainbow shows the range of colors from red on the top to violet on the bottom. The appearance

> STORYLINE In the previous chapter, you took a walk outside your home to investigate the signal strength of your home Wi-Fi system. You are now standing on the sidewalk contemplating your results. You glance over at your shadow on the dewdrop-encrusted grass. You see a bright glow around the shadow of your head. Startled by this effect, you look upward and see a rainbow in the sky. And there are scome fairty pastel-colored bands below the main rainbow, as in the photo above. You think that all these effects must have something to do with the Sun behind you, so you turn to look up at the Sun. You are startled to see two bright areas in the sky far off to either side of the Sun. You then look down the street and see what appears to be a puddle of water in the street. But the street is dry where you are standing. You walk down to where the puddle was seen. The roadway is dry there, too! What's going on? What's causing all these effects?

> CONNECTIONS In the previous chapter, we introduced the notion of electromagnetic waves. In these next few chapters on optics, we will focus on light as our representative electromagnetic wave, because we have everyday experience with light. This first chapter on optics begins by discussing the nature of light and early methods for measuring the speed of light. Next, we study the fundamental phenomena of geometric optics: reflection of light from a surface and refraction as the light crosses the boundary between two media. We also study the dispersion of light as it refracts into materials, resulting in visual displays such as the rainbow. Finally, we investigate the phenomenon of total internal reflection, which is the basis for the operation of optical fibers and the technology of fiber optics. These investigations will set up what we need to form optical images using

The colors in many of a hummingbird's feathers are not due to pigment. What do you think is the origin of these colors? (Dec Hogen/Shutterstock)

36

 Young's Double-Sit Experiment
 Analysis Model: Waves in Interference
 Intensity Distribution of the Double-Sit Interference Pattern
 Change of Phase Due to Reflection
 Interference in Thin Films
 The Michelson

Interferometer

962

STORVLINE Time to take a break from studying physics and just childut on your back patiol You are lying in your chaise lounge and enjoying the nice spring day. Suddenly, a hummingbird fires in, doesn't notice you, and lands

Wave Optics

chill out on your back patiol You are lying in your chaise lounge and enjoying the nice spring day. Suddenly, a hummingbird flies in, doesn't notice you, and lands just a few feet away. You hold still and watch quietly, amazed at the beautiful colors on the feathers of the bird, which seem to glisten. Then you notice, as the bird turns a bit, that the colors shift in their intensity and hue. You think, "Wait a minutel Why would that happen?" And then, in direct contradiction to your efforts to take a break from physics, you think, "Could there be some physics behind the appearance of the colors in this bird's feathers?" The startled bird files away in fear as you reach for your smartphone and fire up the Internet.

CONNECTIONS In Chapter 35, we studied light rays passing through a lens or reflecting from a mirror to describe the formation of images. This discussion completed our study of *ray optics*. In this chapter and in Chapter 37, we are concerned with *wave optics*, sometimes called *physical optics*, the study of interfarence of sound waves in Chapter 17 and will look at the comparable effect for light in this chapter. We introduced the phenomenon of *diffaction* for light waves cannot be polarized. Light waves can be polarized, however, and we shall study that phenomenon in Chapter 37. These three phenomenon to be adequately explained with the ray optics used in Chapters 34 and 35 because they depend on the fact that light is wavelike in nature. The discussion of interfarence leads to the historical development of the *Michelson interfarence* needs to the egistine relativity.

c=3x10^8m/s

h=6.62607015×10⁻³⁴

\sim	•
$I = I \cap O \cap O$	
$(\neg A ())$	
UIUIUU	

-Light: Reflection and Refraction -The Wave Nature of Light; Interference -Diffraction and Polarization of atoms: Lasers and Holography Doppler effect of light

		41–7 Conservat and Other
	Volume 3	41 0 LIGHT : 40 -
		8
	30 Special Theory of Relativity	951
	36-1 Galilean-Newtonian Relativity	952 954 rity 957
2 LIGHT: REFLECTION		958
32 AND REFRACTION 837		960
32–1 The Ray Model of Light 838		967 Janip
32–2 Reflection; Image Formation by a	DS DS	968
32–3 Formation of Images by Spherical		974
Mirrors 842		974 978
32-4 Index of Refraction 850 32-5 Refraction: Snell's Law 850		980 EINTU
32–6 Visible Spectrum and Dispersion 852	s state of the sta	985
32-7 Total Internal Reflection; Fiber Optics 854		
*32-8 Refraction at a Spherical Surface 856		987 OHANTIN MECHANICS OF
PROBLEMS 860 GENERAL PROBLEMS 864	the second second second	39 ATOMS
	And a second of the second	987 39-1 Quantum Mechanical View of A
	THE WAVE NATURE OF LICHT	993 39–2 Hydrogen Atom: Schrödinger E
	34 INTERFERENCE 900	994 and Quantum Numbers
rational associate the database in Fig. 33-334, the object is placed in the local	24.1 Ware Particle Harry?	f 39–4 Complex Atoms: the Exclusion F
comparison of part (a) the eye is to focus on it. If the eye is related	Principle and Diffraction 901	997 39–5 Periodic Table of Elements
shewed at the near point with when you "hous" on the object "	34-2 Huygens' Principle and the Law of	997 39-6 X-Ray Spectra and Atomic Num 1000 *39 7 Magnetic Dipole Moment:
magnification or magnifying power, the entry of	34_3 Interference Young's Double-Slit	1000 Total Angular Momentum
angle subtended by an object when using the subtended sing the unaided eye, with the object at the near the intended sing the	Experiment 903	1001 39-8 Fluorescence and Phosphoresce
normal eye):	*34-4 Intensity in the Double-Slit	ns 1009 *39–10 Holography
$M = \frac{\theta'}{\theta}$, (33-7)	34–5 Interference in Thin Films 909 s	1014 SUMMARY 1066 QUESTIONS 106
where θ and θ' are shown in Fig. 33-33. $\mu' = Nd$, (Fig. 33-333) where	*34–6 Michelson Interferometer 914	PROBLEMS 1067 GENERAL PROB
length by noting that $\theta = h/N$ (Fig. 3.1. where are small so σ and σ' open h is the height of the object and we assure least eye strain), the image will	*34–7 Luminous Intensity 915	1017 40 MOLECULES AND SOLIDS
be in the integration of the object and we use an the face) point see Fig. 33-34.	PROBLEMS 916 GENERAL PROBLEMS 918	1018 40–1 Bonding in Molecules
$d_c = f$ and $\theta' = h/f$. The	D	1018 40-2 Potential-Energy Diagrams
	35 AND BOLADIZATION 021	1020 Ior Molecules 40-3 Weak (van der Waals) Bonds
	J AND FOLARIZATION 921	1024 40-4 Molecular Spectra
	35–1 Diffraction by a Single Slit or Disk 922	40-5 Bonding in Solids
	Pattern 924 tic	n 1027 Fermi Energy
L	*35-3 Diffraction in the Double-Slit Experiment 927 Ck	ets 1028 40–7 Band Theory of Solids
33 LENSES AND OPTICAL	35–4 Limits of Resolution; Circular Apertures 929 35–5 Resolution of Telescopes and	1030 40-8 Semiconductors and Doping 40-9 Semiconductor Diodes
JJ INSTRUMENTS 800	Microscopes; the λ Limit 931	1035 1036 40–10 Transistors and Integrated Circuits
33–1 Thin Lenses; Ray Tracing 867	*35-6 Resolution of the Human Eye	SUMMARY 1098 QUESTIONS 109
33-3 Combinations of Lenses 874	and Useful Magnification 932 S 35-7 Diffraction Grating 933	1042 PROBLEMS 1099 GENERAL PROB
*33-4 Lensmaker's Equation 876	35–8 The Spectrometer and Spectroscopy 935	
33-5 Cameras: Film and Digital 878	*35-9 Peak Widths and Resolving Power for a	
33-0 The Human Eye; Corrective Lenses 882 33-7 Magnifying Glass 885	35-10 X-Rays and X-Ray Diffraction 938	
33–8 Telescopes 887	35–11 Polarization 940	
*33–9 Compound Microscope 890	*35–12 Liquid Crystal Displays (LCD) 943	
*33-10 Aberrations of Lenses and Mirrors 891	*35-13 Scattering of Light by the Atmosphere 945	
SUMMARY 892 QUESTIONS 893 PROBLEMS 894 GENERAL PROBLEMS 897	PROBLEMS 945 QUESTIONS 946 PROBLEMS 946 GENERAL PROBLEMS 949	
	CONTENTS IX	

	41 RADIOACTI	VITY	1104	43	ELEMENTARY PARTICLES	1164
	41-1 Structure and	Properties of the Nuc	leus 1105	43-1	High-Energy Particles and Accelerat	tors 1165
	41-2 Binding Ene	rgy and Nuclear Forces	1108	43-2	Beginnings of Elementary Particle	
	41-3 Radioactivity	/	1110	10.0	Physics—Particle Exchange	1171
	41–4 Alpha Decay		1111	43-3	Particles and Antiparticles	1174
	41-5 Beta Decay		1114	43-4	Particle Interactions and Conservation L	aws 11/5
	41-0 Gamma Dec 41-7 Conservation	ay of Nucleon Number	1110	43-5	Particle Classification	1179
	and Other Conservation	onservation Laws	1117	43-0	Particle Stability and Resonances	11/0
	A1 0 LIAIFT Ha and	Data of Dagar	1117	43_8	Strangeness? Charm? Towards a New Mo	del 1181
			1121	43-9	Quarks	1182
			1122	43-10) The Standard Model: OCD and	1100
			1124		Electroweak Theory	1184
-		126	e 1120	43-11	I Grand Unified Theories	1187
e		DELEM	5 1129	43-12	2 Strings and Supersymmetry	1189
-		TS	11.01		PROBLEMS 1190 GENERAL PROBLEMS	s 1191
			1131		and the second of the second	
			1122		A STATE OF THE STATE OF	
	Anist		1132		Car the second of	
	1 thomas	tors	1136		the state of the	
	CATA	12	1141	name.	and the second second	
	D A	Matte	er; 1146	44	ASTROPHYSICS AND COSMOLOG	GY 1193
	SICH-DI	Dosim	etry 1147 1150	44-1	Stars and Galaxies	1194
		rine	1150	44-2	Stellar Evolution: Nucleosynthesis,	1000
	112	Scan	1151		and the Birth and Death of Stars	1197
		Jean	1153	44-3	Distance Measurements	1203
		NMR);	44 4	Curvature of Space	1205
0	QUANTUM MECHANICS OF	MRI	1156	44-5	The Expanding Universe: Redshift a	ind
9	ATOMS	1044 159	\$ 1162	0.557	Hubble's Law	1209
-	ATOM3	1044 JULEM	\$ 1102	44-6	The Big Bang and the Cosmic	1010
	Quantum-Mechanical View of Ato	ms 1045		44.7	The Standard Cosmological Model	1213
2	Hydrogen Atom: Schrödinger Equ	ation 1045	N.	44-7	Early History of the Universe	1216
2	and Quantum Numbers	1045	Tip	44-8	Inflation	1219
-3	Complex Atoms the Evolution Del	1049 aciple 1052	1.11	44-9	Dark Matter and Dark Energy	1221
5	Periodic Table of Flomente	1053	11 11	44-10	0 Large-Scale Structure of the Univers	se 1224
6	X-Ray Spectra and Atomic Number	r 1055	1 3	44-11	1 Finally	1224
-7	Magnetic Dipole Moment	1054	-1-1-1		SUMMARY 1225 QUESTIONS 1226	\$ 1227
1	Total Angular Momentum	1057		Appr	NDICES	5 1661
-8	Fluorescence and Phosphorescence	1060	1	- mrrE	1101010	
-9	Lasers	1061		Α	MATHEMATICAL FORMULAS	A-1
10	Holography	1064	81.	B	DERIVATIVES AND INTEGRALS	A-6
	SUMMARY 1066 QUESTIONS 1066	1000	17:0	C	MORE ON DIMENSIONAL ANALYSIS	A-8
	PROBLEMS 1067 GENERAL PROBLE	MS 1069	1234	D	SPHERICAL MASS DISTRIBUTION	A-9
0	Morrow was Course	1071	- /	Е	DIFFERENTIAL FORM OF MAXWELL'S EQUATION	ONS A-12
U	MOLECULES AND SOLIDS	10/1	1	F	SELECTED ISOTOPES	A-14
	Bonding in Molecules	1071	1	ANSW	PROBLEMS	A-18
-2	Potential-Energy Diagrams for Molecules	1074	11	PHOT	O CREDITS	A-47 A-72
-3	Weak (van der Waals) Bonds	1074			CONT	ENTS XI
)-4	Molecular Spectra	1080			CONTR	A15 A1
)-5	Bonding in Solids	1085				
)-6	Free-Electron Theory of Metals:					
	Fermi Energy	1086				
)-7	Band Theory of Solids	1090				
)-8	Semiconductors and Doping	1093				
)-9	Semiconductor Diodes	1094				
H10	Transistors and Integrated Circuits (0	Chips) 1097				
	SUMMARY 1098 QUESTIONS 1099					
	1000					

11 NUCLEAR PHYSICS AND

CONTENTS IX

Photonics

Ref: Giancoli - Physics for Scientists and Engineers https://www.youtube.com/watch?v=knRDHwzQ9fY

Duality wave-corpuscle of light

Is the theory that *light* is a series of spherical *waves* progressing from the source with velocity c (three hundred thousand km/s), and the theory that *light* is a group of *corpuscles* moving in straight lines from the source with velocity c

Simulators

https://ricktu288.github.io/ray-optics/

https://aapt.scitation.org/doi/10.1119/1.3677652

Lasers: <u>https://phet.colorado.edu/sims/cheerpj/lasers/latest/lasers.html?simulation=lasers</u>

Optical quantum control with gratings: <u>https://phet.colorado.edu/sims/cheerpj/optical-quantum-control/latest/optical-quantum-control.html?simulation=optical-quantum-control Interference: https://phet.colorado.edu/sims/cheerpj/quantum-wave-interference/latest/quantum-wave-interference.html?simulation=quantum-wave-interference</u>

https://www.physicsclassroom.com/Physics-Interactives/Refraction-and-Lenses/Optics-Bench/Optics-Bench/ Refraction-Interactive https://github.com/aasim74/Wave-Optics-Simulations https://www.codeseeder.com/examples/rib-waveguide-modes/

Optics

- Propagation: *transmission*, *reflection*, *refraction*
- Scattering, diffraction and Interference
- **Ray Optics**: A ray is a line drawn in space corresponding to the direction of flow of radiant energy. Is valid as long as the <u>light waves</u> propagate through and around objects whose dimensions are much greater than the light's <u>wavelength</u>. Ray theory (<u>geometrical optics</u>) does not describe phenomena such as <u>diffraction</u>, which require <u>wave theory</u>
- Wave theory -

$$\vec{\mathbf{E}}_r = \vec{\mathbf{E}}_{0r} \cos\left(\vec{\mathbf{k}}_r \cdot \vec{\mathbf{r}} - \omega_r t + \boldsymbol{\varepsilon}_r\right)$$
$$\vec{\mathbf{E}}_t = \vec{\mathbf{E}}_{0t} \cos\left(\vec{\mathbf{k}}_t \cdot \vec{\mathbf{r}} - \omega_t t + \boldsymbol{\varepsilon}_t\right)$$

https://phet.colorado.edu/sims/html/bending-light/latest/bending-light_en.html

Ray optics and wave optics

https://ricktu288.github.io/ray-optics/

Wave optics

$$\vec{\mathbf{E}}_r = \vec{\mathbf{E}}_{0r} \cos(\vec{\mathbf{k}}_r \cdot \vec{\mathbf{r}} - \omega_r t + \varepsilon_r)$$
$$\vec{\mathbf{E}}_t = \vec{\mathbf{E}}_{0t} \cos(\vec{\mathbf{k}}_t \cdot \vec{\mathbf{r}} - \omega_t t + \varepsilon_t)$$

$$\hat{\mathbf{u}}_n \times \vec{\mathbf{E}}_i + \hat{\mathbf{u}}_n \times \vec{\mathbf{E}}_r = \hat{\mathbf{u}}_n \times \vec{\mathbf{E}}_t$$

Fresnel equations

Using the fact that $\mu_i = \mu_r$ and $\theta_i = \theta_r$, we can combine these formulas to obtain two more of the *Fresnel Equations*:

$$r_{\parallel} \equiv \left(\frac{E_{0r}}{E_{0i}}\right)_{\parallel} = \frac{\frac{n_t}{\mu_t} \cos \theta_i - \frac{n_i}{\mu_i} \cos \theta_t}{\frac{n_i}{\mu_i} \cos \theta_t + \frac{n_t}{\mu_t} \cos \theta_i}$$
(4.38)

and

$$t_{\parallel} = \left(\frac{E_{0t}}{E_{0i}}\right)_{\parallel} = \frac{2\frac{n_i}{\mu_i}\cos\theta_i}{\frac{n_i}{\mu_i}\cos\theta_t + \frac{n_t}{\mu_t}\cos\theta_i}$$
(4.39)

$$r_{\parallel} = \frac{n_t \cos \theta_i - n_i \cos \theta_t}{n_i \cos \theta_t + n_t \cos \theta_i}$$

$$t_{\parallel} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$$

$$r_{\perp} = -\frac{\sin(\theta_i - \theta_t)}{\sin(\theta_i + \theta_t)}$$
$$r_{\parallel} = +\frac{\tan(\theta_i - \theta_t)}{\tan(\theta_i + \theta_t)}$$
$$t_{\perp} = +\frac{2\sin\theta_t\cos\theta_i}{\sin(\theta_i + \theta_t)}$$
$$t_{\parallel} = +\frac{2\sin\theta_t\cos\theta_i}{\sin(\theta_i + \theta_t)}$$

Goose Hanchen Shift

a light beam, which is totally internally reflected, undergoes a minute lateral shift from the position where the beam strikes the interface

! Very important for optical fibers

First, the electric and magnetic fields are perpendicular to each other at any point and to the direction of wave travel -> plane waves

Second, we can see that the fields alternate in the propagation direction

The electric and magnetic fields are " in phase" : that is, they each are zero at the same points and reach their maxima at the same points in space

$$E = E_y = E_0 \sin(kx - \omega t)$$

$$B = B_z = B_0 \sin(kx - \omega t)$$

 $k = \frac{2\pi}{\lambda}$, $\omega = 2\pi f$, and $f\lambda = \frac{\omega}{k} = v$,

Polarization

It has already been established that light may be treated as a

transverse electromagnetic wave. Thus far we have considered

only **linearly polarized** or **planepolarized** light, that is, light

for which the orientation of the electric field is constant, although its magnitude and sign vary in time

Polarization and phasor

- Phasor addition provides a highly useful technique for dealing with the superposition of orthogonal waves
- Axis projections

Figure 8.3 Phasor addition of two orthogonal electromagnetic waves in-phase and of amplitudes E_{0x} and E_{0y} . Both rotate clockwise at a rate ω .

Ēγ

(a)

Optical fiber –

acts like a sequential polarizer

Reference

х

 $\int kz_0$

Ē

 $\omega t = 0$

(b)

Time

 $\omega t = \pi/4$

 $\omega t = \pi/2$

 $\omega t = 3\pi/4$

Circular polarization

Linear optical element	Jones matrix	Mueller matrix
Horizontal linear polarizer ↔	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
Vertical linear polarizer 🗘	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
Linear polarizer at $+45^{\circ}$	$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
Linear polarizer at −45° s	$\frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
Quarter-wave plate, fast axis vertical	$e^{i\pi/4} \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Quarter-wave plate, fast axis horizontal	$e^{i\pi/4} \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$
Homogeneous circular polarizer right O	$\frac{1}{2} \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$
Homogeneous circular polarizer left Cr	$\frac{1}{2} \begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$

TABLE 8.6 Jones and Mueller Matrices

......

Circular vector rotation (right)- clockwise

Polarisation

Forces Conservation Waves Light E.4.M Rotation

oPhysics: Interactive Physics Simulations

Fun Stuff

Onematics:

Description

This is a simulation intended to help visualize polarization. A polarizing filter has a particular transmission axis and only allows light waves aligned with that axis to pass through. In this simulation unpolarized waves pass through a vertical sit, leaving only their vertical components. This vertical transverse wave approaches a vertical sit. If the sit is rotated, only a component of the wave can pass through if the sit is rotated 90 degrees, the wave is

https://ophysics.com/l.html

Figure 8.14 A linear polarizer and analyzer—Malus's Law. Natural light of irradiance I_0 is incident on a linear polarizer tilted at an angle θ with respect to the vertical. The irradiance leaving the first linear polarizer is $I_1 = I(0)$. The irradiance leaving the second linear polarizer (which makes an angle θ with the first) is $I(\theta)$.

you certainly can confirm Malus's Law with two ordinary Polaroids, you'll have to be careful to use light in the range from 450 nm to 650 nm.

Birefringence

Many crystalline substances (i.e., solids whose atoms are arranged in some sort of regular repetitive array) are *optically anisotropic*. Their optical properties are not the same in all directions within any given sample.

Figure 8.22 A lightbeam with two orthogonal field components traversing a calcite principal section. https://en.wikipedia.org/wiki/Birefringence

Optical fibers

.

Wave – Interference INTERFEROMETER

Constructive – in phase

Destructive

Simulators https://phet.colorado.edu/sims/html/wave-interference/latest/wave-interference_en.html

Interference

Figure 9.2 Waves from two point sources overlapping in space.

• optical interference corresponds to the interaction of two or more lightwaves yielding a resultant irradiance that deviates from the sum of the component irradiances.

Figure 9.1 Water waves from two in-phase point sources in a ripple tank. In the middle of the pattern the wave peaks (thin bright bands), and troughs (thin black bands) lie within long wedge-shaped areas (maxima) separated by narrow dark regions of calm (minima). Although the superim-

Max and min – young experiment

Diffraction GRATINGS

https://ophysics.com/l5b.html

https://ophysics.com/l4.html https://phet.colorado.edu/sims/html/waveinterference/latest/wave-interference_en.html

http://physics.bu.edu/~duffy/HTML5/diffraction.html

https://www.animations.physics.unsw.edu.au/light/diffraction/index.html

Quantum optics

https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2016/video-lectures/part-1/compton-scattering/

Photoelectric effect

https://phet.colorado.edu/sims/cheerpj/photoelectric/latest/photoelectric.html?simulation=photoelectric

The Doppler effect is an effect observed in light and **sound waves as they move toward or away from an observer**

Doppler effect

DOPPLER EFFECT IN LIGHT WAVE

And this is used to tell if the source is moving toward or away from us and at what speed.

Doppler Effect

Measuring the relative velocities of stars by the Doppler shift.

https://www.youtube.com/watch?v=vDvIhiCnatE https://phys.org/news/2016-03-nonlinear-rotational-doppler-effect.html

RGB colour vision (camera vision)

63% Red 81% Green 100% Blue

https://phet.colorado.edu/sims/html/color-vision/latest/color-vision_en.html

Rainbow

Home	Kinematics	Forces	Conservation	Waves	Light	E & M	Rotation	Fluids	Modern	Drawing Tools
Fun Stuff										

https://ophysics.com/l17.html

EXAMPLE 31–2 Determining \vec{E} and \vec{B} in EM waves. Assume a 60.0-Hz EM wave is a sinusoidal wave propagating in the *z* direction with \vec{E} pointing in the *x* direction, and $E_0 = 2.00 \text{ V/m}$. Write vector expressions for \vec{E} and \vec{B} as functions of position and time.

APPROACH We find λ from $\lambda f = v = c$. Then we use Fig. 31–9 and Eqs. 31–7 and 31–8 for the mathematical form of traveling electric and magnetic fields of an EM wave.

SOLUTION The wavelength is

$$\lambda = \frac{c}{f} = \frac{3.00 \times 10^8 \,\mathrm{m/s}}{60.0 \,\mathrm{s}^{-1}} = 5.00 \times 10^6 \,\mathrm{m}.$$

From Eq. 31–8 we have

$$k = \frac{2\pi}{\lambda} = \frac{2\pi}{5.00 \times 10^6 \,\mathrm{m}} = 1.26 \times 10^{-6} \,\mathrm{m}^{-1}$$
$$\omega = 2\pi f = 2\pi (60.0 \,\mathrm{Hz}) = 377 \,\mathrm{rad/s}.$$

From Eq. 31–11 with v = c, we find that

$$B_0 = \frac{E_0}{c} = \frac{2.00 \text{ V/m}}{3.00 \times 10^8 \text{ m/s}} = 6.67 \times 10^{-9} \text{ T}.$$

The direction of propagation is that of $\vec{\mathbf{E}} \times \vec{\mathbf{B}}$, as in Fig. 31–9. With $\vec{\mathbf{E}}$ pointing in the *x* direction, and the wave propagating in the *z* direction, $\vec{\mathbf{B}}$ must point in the *y* direction. Using Eqs. 31–7 we find:

$$\vec{\mathbf{E}} = \hat{\mathbf{i}}(2.00 \text{ V/m}) \sin[(1.26 \times 10^{-6} \text{ m}^{-1})z - (377 \text{ rad/s})t] \vec{\mathbf{B}} = \hat{\mathbf{j}}(6.67 \times 10^{-9} \text{ T}) \sin[(1.26 \times 10^{-6} \text{ m}^{-1})z - (377 \text{ rad/s})t]$$

Speed of light $3.00 \times 10^8 \,\mathrm{m/s}.$

Attempts:

- *Galileo attempted to measure the
- speed of light
- *Albert A. Michelson (1852-1931)

Electromagnetic spectrum

Conclusions

Optics

- Science
 - questions the nature of light
 - models light and its properties
 - predicts the behaviour and propagation of light
 - studies interaction of light with matter
- Etymology
 - $o\psi = oys' = the eye$
 - 'optikos' = 'pertaining to sight'

Photonics

- Science and technology
 - puts light at work
 - exploits the unique features of light to develop new applications and functionalities
- Etymology
 - Gilbert E. Lewis in a letter to the editor of Nature (Vol. 118, Part 2, December 18, 1926, p. 874-875) → 'Photon' = 'carrier of radiant energy'

II. Photonics applications

Photonics is a key engineering discipline

Photonics comprises the

- > generation
- > amplification
- transmission
- modulation
- detection

Lighting (LEDs, displays)

Manufacturing (high power lasers) Telecommunication (fibers, components,

systems)

Medicine (lasers, microscopes)

Sensor technology (optical sensors)

LED light bulb

glass fibers

Photonics bears the same relationship to light and photons as electronics does to electricity and electrons.

of light

First definition

Photonics is the science of the harnessing of light. Photonics encompasses the generation of light, the detection of light, the management of light through guidance, manipulation, and amplification, and most importantly, its utilisation for the benefit of mankind

Pierre Aigrain, 1967

Nature = a source of inspiration

− Lighting, displays & PV →
 photonics for well-being & energy

www.light2015.org

- International
- Year of Light
- 2015

Was declared

Key enable technology

Photonics is selected as a Key Enabling Technology

Photonics

Nanotechnology

Nano- & microelectronics

Industrial biotechnology

Advanced manufacturing

Advanced materials

Healthcare

- Early diagnosis through new detection methods
- Minimally invasive surgery

Energy Efficiency

 LEDs, OLEDs and intelligent networks can save 2/3 of electricity for lighting

Safety & Security

Smart sensors for automotive safety; IR detection systems

Manufacturing

- Lasers enable new lightweight structures
- Laser drilling: 25,000 holes per second for efficient solar cells

Inclusion

 High speed fibre networks with multi-terabit capacity are backbone for web 2.0 & 3.0 products & internet of things

- ➤ Total Photonics market € 350 bn (in 2011)
- Average yearly growth rate of 6,5% compared to 2011
- Estimated market size in 2020 ~ € 615 bn
- ➤ European Photonics market ~ € 64 bn
- European market share 18% (in 2011)
- Many market-leading industrial players
- Market shares of European companies
 - Production technology
 - Optical components & systems
 - Measurement & automated vision
 - Medical technology & life sciences
- More than 5000 SMEs in Europe
- ~ 300,000 employees

55%

40%

35%

30%

Self driving cars
 Precision agriculture

 ICT → photonics enabling all wired and wireless communications

 Industrial manufacturing → laser light tools allow for unprecedented quality

More secure airports
 Better headlights

https://phys.org/news/2019-09-scientists-quantum-milestone.html https://phys.org/news/2019-09-quantum.html http://news.mit.edu/2011/quantum-light-0909 https://www.oledcomm.net/lifi-max/

Faster internet

Infrared nightvision for safety and security Autoliv umicore

Optical fiber sensors for smart structures

Opto-electronic chips for automotive

Optical engines for food-sorting

. ODENDERO #BEST

3-Dimensional

displays and projectors

BARCO

Optical interconnects for Local Area Networks

Freeform micro-optics for solar energy umicore

High-efficiency lighting applications

Have you ever gotten super lost? What happened?