MOSFET LOGIC CIRCUITS

I. OBJECTIVES

a) Finding out the logic function of some circuits with MOSFET

II. COMPONENTS AND INSTRUMENTATION

You will use the experimental assembly built with n-channel IRFZ24N MOSFETs and resistors. Because you will apply and measure both dc and ac voltages you will need a dc regulated voltage supply, a signal generator, a digital multimeter and a dual channel oscilloscope

III. PREPARATION

1.P. Logic inverter with MOSFET

The following logic convention is used: the high level of the voltage - " 1 " logic, the low level of the voltage - " 0 " logic.

For the n -channel IRFZ24N MOSFET, what is the value of the threshold voltage, V_{Th}, and of β, according with the datasheet?

1.1.P Logic function

- Find the logic function of the circuit from Fig. 1.
1.2.P VTC
- Plot the $\operatorname{VTC} \mathrm{vy}\left(\mathrm{v}_{\mathrm{A}}\right)$ for the circuit in Fig. 1 .

2.P. NAND logic circuit

- What is the electrical operating table for the circuit in Fig. 2? va, vb $\in\{0 \mathrm{~V}, 5 \mathrm{~V}\}$. What are the states (off or extreme conduction) of transistors T_{A} and T_{B} for all possible combinations of values of v_{A} and v_{B} ?
- What is the truth table for the circuit in Fig. 2?

3.P. AND logic circuit

- What is the electrical operating table for the circuit in Fig. 3? $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}} \in\{0 \mathrm{~V}, 5 \mathrm{~V}\}$. What are the states (off or extreme conduction) of transistors T_{A} and T_{B} for all possible combinations of values of v_{A} and v_{B} ?
- What is the truth table for the circuit in Fig. 3?

4.P. NOR logic circuit

- What is the electrical operating table for the circuit in Fig. 4? va, vb $\in\{0 \mathrm{~V}, 5 \mathrm{~V}\}$. What are the states (off or extreme conduction) of transistors T_{A} and T_{B} for all possible combinations of values of v_{A} and v_{B} ?
- What is the truth table for the circuit in Fig. 4?

5.P. OR logic circuit

- What is the electrical operating table for the circuit in Fig. 5 ? $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}} \in\{0 \mathrm{~V}, 5 \mathrm{~V}\}$. What are the states (off or extreme conduction) of transistors T_{A} and T_{B} for all possible combinations of values of v_{A} and v_{B} ?
- What is the truth table for the circuit in Fig. 5?

IV. EXPLORATION AND RESULTS

1. Logic inverter with MOSFET

1.1. Logic function

Exploration

Build the circuit in Fig. 1.

- At input A, apply a TTL signal with 1 kHz frequency obtained from the signal generator.
- Using the calibrated oscilloscope in the Y-t mode you will visualise $v_{A}(t)$ and $v y(t)$.

Results

- $\quad \mathrm{va}^{(}(\mathrm{t}), \mathrm{vy}(\mathrm{t})$.
- The truth table in which A and Y are the input and output logic variables.
- What is the logic function of the circuit?

Fig. 1. Logic inverter with MOSFET

1.2. VTC
 Exploration

Use the circuit in Fig. 1.

- $V_{A}(t)=5 \sin (2 \pi 1000 t)[V][H z]$
- Using the oscilloscope in the Y-X mode you will visualise the $\mathrm{VTC} \mathrm{vy}\left(\mathrm{va}_{\mathrm{A}}\right)$

Results

- VTC vy(va). What is the value of the threshold voltage, based on the VTC from the oscilloscope?

2. NAND logic circuit

Exploration

Build the circuit in Fig. 2.

- $\mathrm{VA}, \mathrm{Vb} \in\{0 \mathrm{~V} ; 5 \mathrm{~V}\}$ in all possible combinations
- Measure vy with the de voltmeter for all possible combinations of the two input voltages.

Results

- Electrical operating table containing $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}}, \mathrm{v}_{\mathrm{Y}}$, the off or exc states of T_{A} and T_{B} for the 4 possible combinations of v_{A} and v_{B} values from $\{0 \mathrm{~V} ; 5 \mathrm{~V}\}$
- Truth table with A, B logic inputs and Y logic output
- Is the logic function the same as the one determined at 2.P.?

Fig. 2. NAND logic circuit

3. AND logic circuit

Exploration

Build the circuit in Fig. 3.

- $\mathrm{VA}, \mathrm{vb} \in\{0 \mathrm{~V} ; 5 \mathrm{~V}\}$ in all possible combinations
- Measure vy with the de voltmeter for all possible combinations of the two input voltages.

Results

- Electrical operating table containing $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}}, \mathrm{v}_{\mathrm{Y}}$, the off or exc states of $\mathrm{T}_{\mathrm{A}}, \mathrm{T}_{\mathrm{B}}, \mathrm{T}_{\mathrm{C}}$ for the 4 possible combinations of v_{A} and v_{B} values from $\{0 \mathrm{~V} ; 5 \mathrm{~V}\}$
- Truth table with A, B logic inputs and Y logic output
- Is the logic function the same as the one determined at 3.P.?

Fig. 3. AND logic circuit

4. NOR logic circuit

Exploration

Build the circuit in Fig. 4.

- $\mathrm{VA}, \mathrm{VB} \in\{0 \mathrm{~V} ; 5 \mathrm{~V}\}$ in all possible combinations
- Measure vy with the dc voltmeter for all possible combinations of the two input voltages.

Results

- Electrical operating table containing $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}}, \mathrm{v}_{\mathrm{Y}}$, the off or exc states of T_{A} and T_{B} for the 4 possible combinations of v_{A} and v_{B} values from $\{0 \mathrm{~V} ; 5 \mathrm{~V}\}$
- Truth table with A, B logic inputs and Y logic output
- Is the logic function the same as the one determined at 4.P.?

Fig. 4. NOR logic circuit

5. OR logic circuit

Exploration

Build the circuit in Fig. 5.

- $\mathrm{VA}, \mathrm{VB} \in\{0 \mathrm{~V} ; 5 \mathrm{~V}\}$ in all possible combinations
- Measure vy with the de voltmeter for all possible combinations of the two input voltages.

Results

- Electrical operating table containing $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}}, \mathrm{v}_{\mathrm{y}}$, the off or exc states of $\mathrm{T}_{\mathrm{A}}, \mathrm{T}_{\mathrm{B}}, \mathrm{T}_{\mathrm{C}}$ for the 4 possible combinations of v_{A} and v_{B} values from $\{0 \mathrm{~V} ; 5 \mathrm{~V}\}$
- Truth table with A, B logic inputs and Y logic output
- Is the logic function the same as the one determined at 5.P.?

Fig. 5. OR logic circuit

REFERENCES

1. Oltean, G., Electronic Devices, Editura U.T. Pres, Cluj-Napoca, ISBN 973-662-220-7, 2006
2. Sedra, A. S., Smith, K. C., Microelectronic Circuits, Fifth Edition, Oxford University Press, ISBN: 0-19-514252-7, 2004
3. http://www.bel.utcluj.ro/dce/didactic/fec/
