MOSFET LOGIC CIRCUITS

I. OBJECTIVES

a) Finding out the logic function of some circuits with MOSFET

II. COMPONENTS AND INSTRUMENTATION

You will use the experimental assembly built with n-channel IRFZ24N MOSFETs and resistors. Because you will apply and measure both dc and ac voltages you will need a dc regulated voltage supply, a signal generator, a digital multimeter and a dual channel oscilloscope

III. PREPARATION

1.P. Logic inverter with MOSFET

The following logic convention is used: the high level of the voltage - "1" logic, the low level of the voltage - "0" logic.

For the n-channel IRFZ24N MOSFET, what is the value of the threshold voltage, V_{Th} , and of β , according with the datasheet?

1.1.P Logic function

- Find the logic function of the circuit from Fig. 1.
- **1.2.P VTC**
- Plot the VTC $v_Y(v_A)$ for the circuit in Fig. 1.

2.P. NAND logic circuit

- What is the electrical operating table for the circuit in Fig. 2? v_A , $v_B \in \{0V, 5V\}$. What are the states (off or extreme conduction) of transistors T_A and T_B for all possible combinations of values of v_A and v_B ?
- What is the truth table for the circuit in Fig. 2?

3.P. AND logic circuit

- What is the electrical operating table for the circuit in Fig. 3? v_A , $v_B \in \{0V, 5V\}$. What are the states (off or extreme conduction) of transistors T_A and T_B for all possible combinations of values of v_A and v_B ?
- What is the truth table for the circuit in Fig. 3?

4.P. NOR logic circuit

- What is the electrical operating table for the circuit in Fig. 4? v_A , $v_B \in \{0V, 5V\}$. What are the states (off or extreme conduction) of transistors T_A and T_B for all possible combinations of values of v_A and v_B ?
- What is the truth table for the circuit in Fig. 4?

5.P. OR logic circuit

- What is the electrical operating table for the circuit in Fig. 5? $v_A, v_B \in \{0V, 5V\}$. What are the states (off or extreme conduction) of transistors T_A and T_B for all possible combinations of values of v_A and v_B ?
- What is the truth table for the circuit in Fig. 5?

IV. EXPLORATION AND RESULTS

1. Logic inverter with MOSFET

1.1. Logic function

Exploration

Build the circuit in Fig. 1.

- At input A, apply a TTL signal with 1kHz frequency obtained from the signal generator.
- Using the calibrated oscilloscope in the Y-t mode you will visualise $v_A(t)$ and $v_Y(t)$.

Results

- $v_A(t), v_Y(t)$.
- The truth table in which A and Y are the input and output logic variables.
- What is the logic function of the circuit?

Fig. 1. Logic inverter with MOSFET

1.2. VTC

Exploration

Use the circuit in Fig. 1.

- v_A(t)=5 sin(2π 1000t) [V] [Hz]
- Using the oscilloscope in the Y-X mode you will visualise the VTC $v_Y(v_A)$

Results

• VTC v_Y(v_A). What is the value of the threshold voltage, based on the VTC from the oscilloscope?

2. NAND logic circuit

Exploration

- Build the circuit in Fig. 2.
- $v_A, v_B \in \{0V; 5V\}$ in all possible combinations
- Measure vy with the dc voltmeter for all possible combinations of the two input voltages.

Results

• Electrical operating table containing v_A , v_B , v_Y , the off or exc states of T_A and T_B for the 4 possible combinations of v_A and v_B values from $\{0V; 5V\}$

- Truth table with A, B logic inputs and Y logic output
- Is the logic function the same as the one determined at 2.P.?

Fig. 2. NAND logic circuit

3. AND logic circuit

Exploration

Build the circuit in Fig. 3.

- $v_A, v_B \in \{0V; 5V\}$ in all possible combinations
- Measure vy with the dc voltmeter for all possible combinations of the two input voltages.

Results

• Electrical operating table containing v_A , v_B , v_Y , the off or exc states of T_A , T_B , T_C for the 4 possible combinations of v_A and v_B values from $\{0V; 5V\}$

- Truth table with A, B logic inputs and Y logic output
- Is the logic function the same as the one determined at 3.P.?

Fig. 3. AND logic circuit

4. NOR logic circuit

Exploration

- Build the circuit in Fig. 4.
- $v_A, v_B \in \{0V; 5V\}$ in all possible combinations
- Measure vy with the dc voltmeter for all possible combinations of the two input voltages.

Results

• Electrical operating table containing v_A , v_B , v_Y , the off or exc states of T_A and T_B for the 4 possible combinations of v_A and v_B values from $\{0V; 5V\}$

- Truth table with A, B logic inputs and Y logic output
- Is the logic function the same as the one determined at 4.P.?

Fig. 4. NOR logic circuit

5. OR logic circuit

Exploration

Build the circuit in Fig. 5.

- $v_A, v_B \in \{0V; 5V\}$ in all possible combinations
- Measure vy with the dc voltmeter for all possible combinations of the two input voltages.

Results

• Electrical operating table containing v_A , v_B , v_Y , the off or exc states of T_A , T_B , T_C for the 4 possible combinations of v_A and v_B values from $\{0V; 5V\}$

- Truth table with A, B logic inputs and Y logic output
- Is the logic function the same as the one determined at 5.P.?

Fig. 5. OR logic circuit

REFERENCES

1. Oltean, G., Electronic Devices, Editura U.T. Pres, Cluj-Napoca, ISBN 973-662-220-7, 2006

2. Sedra, A. S., Smith, K. C., Microelectronic Circuits, Fifth Edition, Oxford University Press, ISBN: 0-19-514252-7, 2004

3. http://www.bel.utcluj.ro/dce/didactic/fec/