FUNCTION GENERATOR WITH OP-AMP

I. OBJECTIVES

a) To determine the domains for the amplitude and frequency of the rectangular, triangular and sinusoidal generated signals.

II. COMPONENTS AND INSTRUMENTATION

We use the experimental assembly in Fig. 4. For the differential supply we need a dc voltage source. We will visualize the voltages in the circuit using a dual channel oscilloscope.

III. PREPARATION

P1. Rectangular and triangular signal generator with Op-amp

- For the circuit in Fig. 1., what is the function of the U1A operational amplifier and the role of the $Q_{1} Q_{3}$ group, connected at the output?
- What are the amplitudes of the voltages in the OutD and Dreptunghi points, if it is known that the $Q_{1} Q_{3}$ group acts like two $Z D 7 V 5$, connected anode to anode, and J9-J10 and J11-J12 are not connected? Draw the two waveforms.
- For the circuit in Fig. 1., what is the function of the U1B operational amplifier together with the capacitors on the feedback (alternatively connected in the circuit)?
- Draw the voltages in the Dreptunghi and Triunghi points, for the capacitors alternatively connected in the circuit.
- What kind of adjustment does Pot1 do, together with one of the capacitors C_{1}, or C_{2} ?
- Compute the minimum and maximum frequency of the rectangular voltage (Dreptunghi output) for each of the two capacitors (alternatively connected in the circuit).
- Compute the value of the fraction k of the Pot1 potentiometer for C_{1} connected in the circuit for which the rectangular voltage has a frequency of 5 KHz ?
- Compute the value of the fraction k of the Pot2 potentiometer for C_{2} connected in the circuit for which the rectangular voltage has a frequency of 10 KHz ?

$\mathbf{P 2}$. Sine wave generator with $\mathbf{O p}$ - amp

- What is the function of the circuit in Fig. 2. and the role of the first Op - amp (U2A)?
- What is the role of the Pot2 potentiometer?
- Draw the voltages from the Triunghi (from the previous exercise) and Sinus points.

P3. Amplitude adjustment circuit

- For the circuit in Fig. 3. specify the function of the U3B Op - amp. What kind of adjustment can be done using this circuit (pay attention to the Pot3 potentiometer)?
- Compute the minimum and maximum values for the gain of the circuit.
- Compute the minimum and maximum values of the amplitudes of the rectangular, triangular and sinusoidal signals, from the Out terminal of the Op - amp (U3B) and the amplitudes of the output signals if $k=0.5$ (for Pot3).

IV. EXPLORATIONS AND RESULTS

1. Rectangular and triangular signal generator with Op - amp

Exploration

- For the circuit in Fig.1. apply a differential voltage $\pm 15 \mathrm{~V}$ in the points J1 and J2.
- Use the jumpers to connect $J 9$ with $J 10$ and visualize on the oscilloscope the voltages in the OutD and Dreptunghi, Dreptunghi and Triunghi points.
- Using the Pot1 potentiometer, determine the minimum and maximum values of the frequency of the rectangular signal (Dreptunghi output).
- Adjust Pot1 in order to obtain a signal with a frequency of 5 KHz at the Dreptunghi output.
- Disconnect J9 from J10, connect J11 with J12 and determine once again, using Pot1, the minimum and maximum values of the frequency of the rectangular signal.
- Adjust Pot1 in order to obtain a signal with a frequency of 10 KHz at the Dreptunghi output.
- Disconnect J11 from J12, reconnect J9 with J10 and determine once again, using Pot1, the minimum and maximum values of the frequency of the rectangular signal.

Fig. 1. Rectangular and triangular signal

Results

- The voltages in OutD and Dreptunghi points.
- The voltages in Dreptunghi and Triunghi points.
- The minimum and maximum values of the frequency of the rectangular signal, for the C_{1} capacitor ($J 9$ with $J 10$).
- The minimum and maximum values of the frequency of the rectangular signal, for the C_{2} capacitor ($J 11$ with $J 12$).
- The value of the frequency of the rectangular signal, using the capacitor C_{1} for Pot1 adjusted to obtain frequency of 10 KHz using capacitor C2.

2. Sine wave generator with $\mathbf{O p}$ - amp

Exploration

- Disconnect all the jumpers from the circuit.
- For the circuit in Fig. 2 supply the points $J 1$ and $J 2$ with differential voltage $\pm 15 \mathrm{~V}$.

Fig. 2. Sine wave generator

- Use the jumpers to connect J9 with J10 and visualize on the oscilloscope the voltages in the Triunghi and Sinus points.
- Modify the value of the Pot2 potentiometer until the voltage at the Sinus output is a sine wave and determine its amplitude, from the oscilloscope.
- Using the Pot1 potentiometer, determine the minimum and maximum values of the frequency of the sine wave (Sinus output).
- Disconnect J9 from J10, connect J11 with J12 and determine once again, using Pot1, the minimum and maximum values of the frequency of the sine wave.

Results

- The voltages in the Triunghi si Sinus points.
- The amplitude value of the sine wave (Sinus output).
- The minimum and maximum values of the frequency of the sine wave for the capacitor C_{1} (J 9 with J 10).
- The minimum and maximum values of the frequency of the sine wave for the capacitor C_{2} ($J 11$ with $J 12$).

3. Amplitude adjustment circuit

Exploration

- Disconnect all the jumpers from the circuit.
- For the circuit in Fig. 3. supply the points $J 1$ and $J 2$ with differential voltage $\pm 15 \mathrm{~V}$.

Fig. 3. Amplitude adjustment circuit

- Use the jumpers to connect $J 9$ with $J 10$.
- To modify the amplitude of the rectangular signal, connect J3 with J4. Visualize the signal from the Dreptunghi and Out points.
- Modify Pot3 (from minimum to maximum) the minimum and maximum values of the amplitude of the output voltage (Out).
- Check if for Pot3 set at half, you get a value of the amplitude of the output voltage Vout inside the interval you determined.
- To modify the amplitude of the triangular signal, disconnect J3 from J4 and connect J5 with J6. Visualize the signal from the Triunghi and Out points.
- Modify Pot3 (from minimum to maximum) the minimum and maximum values of the amplitude of the output voltage (Out).
- Check if for Pot3 set at half, you get a value of the amplitude of the output voltage Vout inside the interval you determined.
- To modify the amplitude of the sinusoidal signal, disconnect J5 from $J 6$ and connect $J 7$ with $J 8$. Visualize the signal from the Sinus and Out points.
- Modify Pot3 (from minimum to maximum) the minimum and maximum values of the amplitude of the output voltage (Out).
- Check if for Pot3 set at half, you get a value of the amplitude of the output voltage Vout inside the interval you determined.

Results

- The voltages in the Dreptunghi and Out points.
- The minimum and maximum values of the amplitude of the output voltage Vout.
- The value of the amplitude of Vout for Pot3 set at half.
- The voltages in the Triunghi and Out points.
- The minimum and maximum values of the amplitude of the output voltage Vout.
- The value of the amplitude of $V_{\text {Out }}$ for Pot3 set at half.
- The voltages in the Triunghi and Out points.
- The minimum and maximum values of the amplitude of the output voltage Vout.
- The value of the amplitude of Vout for Pot3 set at half.

REFERENCES

1. Oltean, G., Circuite Electronice, UT Pres, Cluj-Napoca, 2007, ISBN 978-973-662-300-4
2. M. Ciugudean, T. Mureşan, H. Cârstea, M. E. Tănase, Electronica aplicată cu circuite integrate analogice. Dimensionare, Editura de Vest, Timisoara, 1991, ISBN 973-36-0081-4
3. http://www.bel.utcluj.ro/dce/didactic/fec/

Fig. 4. Experimental assembly

