BUCK AND BUCK-BOOST DC-DC CONVERTERS

I. OBJECTIVES

a) To visualize the waveforms for the voltages and currents from the dc-dc converter circuits (Buck and Buck-boost).

b) To determine the parameters of the output voltages for the dc-dc converters.

II. COMPONENTS AND INSTRUMENTATION

We use the experimental assembly from Fig. 3, equipped with an IRF9130 transistor (enhanced p – channel MOS transistor), a diode, an inductor, resistors and capacitors of different values. The positive voltage supply is applied from a dc voltage supply, and the command voltage is obtained from the signal generator. We use a dual channel oscilloscope to visualize the signals, and a multimeter to measure the dc values.

III. PREPARATION

P1. Buck converter (Step – down)

The output voltage of the Buck converter is lower than the input voltage.

• For the circuit in Fig.1, supplied with $V_I=10V$, controlled with a rectangular signal v_{cmd} from the function generator, with an amplitude of 10V, frequency 33KHz and a duty cycle $\delta=50\%$, draw the waveforms of the following signals:

- $\circ v_{I(t)}, v_{cmd}(t), v_{D3}(t), v_{O}(t);$
- o $i_{I(t)}$, $i_{D3}(t)$, $i_{L1}(t)$, $i_{C1}(t)$.

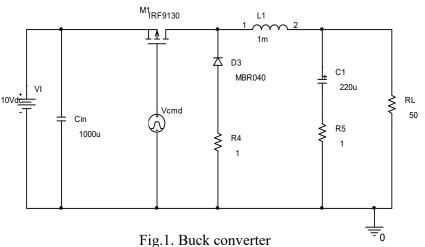
• Write the relationship between V₀ and V₁ and find the value of V₀ for V₁=10V and duty cycle δ =50%. The duty cycle is computed as δ =T_L/T, where T_L represents the time during which the control signal is 0V (control transistor M1 is in conduction state) and T is the period of the signal.

P2. Buck-Boost converter (Step – down/step – up)

The output voltage of a Buck – Boost converter has an inverted polarity compared with the input voltage.

• For the circuit in Fig. 2, supplied with $V_I=10V$, controlled with a rectangular signal v_{cmd} from the function generator, with an amplitude of 10V, frequency 20KHz and a duty cycle $\delta=50\%$, draw the waveforms of the following signals:

- \circ VI(t), Vcmd(t), VL2(t), VO(t);
- o $i_{I(t)}$, $i_{D3}(t)$, $i_{L2}(t)$, $i_{C2}(t)$.
- Write the relationship between V₀ and V₁ and find the value of V₀ for V₁=10V and duty cycle δ =50%.


IV. EXPLORATIONS AND RESULTS

1. Buck converter

1.1. Waveforms

Exploration

• Supply the circuit in Fig.1 with $V_I=10V$ and connect a load resistance $R_{L1}=50\Omega$. You will do this by connecting J2 with J3, J4 with J5, J7 with J8, J11 with J12 and R1 closed.

• In the gate terminal of the control transistor M_1 , apply a rectangular signal v_{cmd} from the function generator, with an amplitude of 10V, frequency 33KHz and a duty cycle δ =50%.

- Visualize the waveforms of the following signals:
 - the control voltage $v_{cmd}(t)$ and the voltage on R4, $v_{R4}(t)$, between *J13* and *GND* (R4 acts like a current transducer for $i_{D3}(t)$);
 - the control voltage $v_{cmd}(t)$ and the voltage on R₅, $v_{R5}(t)$ between J14 and GND (R₅ acts like a current transducer for $i_{C1}(t)$);
 - the control voltage $v_{cmd}(t)$ and the output voltage $v_0(t)$. The output voltage is measured between *OUT* and *GND*, for *J14* connected to the ground.

Results

• Draw the waveforms for v_{cmd}(t), v₀(t), v_{L2}(t), i_{RL}(t), i_{C1}(t), i_{L1}(t), i_{D3}(t) and i₁(t).

1.2. Verifying the relationship between the input and the output voltage

Exploration

- Visualize the control voltage $v_{cmd}(t)$ and the output voltage $v_0(t)$, for $R_{L1}=50\Omega$ and compute V_0/V_I .
- Modify the value of the input voltage and the amplitude of the control voltage to 8V. Measure once again the output voltage and the variation of the output voltage, Δvo, and recompute Vo/V₁.

Results

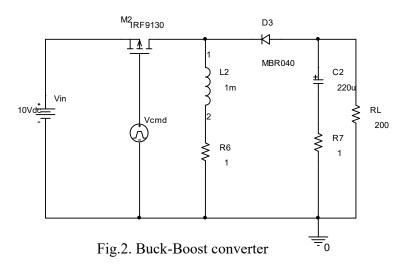
- The value of V_0/V_I for $V_I=10V$.
- The value of V_0/V_I for $V_I=8V$.

1.3. Variation of the output voltage ripple Δv_0 with load resistance

Exploration

- For the circuit in Fig.1. with R_{L1} apply once again v_{cmd} with a duty cycle δ =50%. Copy the values for vo and Δv_0 obtained in section 1.2.
- At the output, replace the load resistance R_{L1} with $R_{L2} = 75\Omega$, by disconnecting *R1* and connecting the jumper on the *R2* position. Visualize the control and the output voltages, measure the output voltage vo, as well as the variation of the output voltage, Δv_0 .

Results


- The values of V₀ and Δv_0 for δ =50% (copied from section 1.2.)
- Draw the waveforms for v_{cmd} (t) and v₀(t), for R_{L2}.
- The values of V_0 and Δv_0 for R_{L2} .

2. Buck-Boost converter

2.1. Waveforms

Exploration

• Supply the circuit in Fig.2 with $V_I=10V$ and connect a load resistance $R_{L1}=200\Omega$. You will do this by disconnecting all the jumpers and connecting J1 with J2, J5 with J6, J8 with J9, J10 with J11 and R3 closed.

- In the gate terminal of the control transistor M₂, apply a rectangular signal v_{emd} from the function generator, with an amplitude of 10V, frequency 20KHz and a duty cycle δ =50%.
- Visualize the waveforms of the following signals:
 - the control voltage $v_{cmd}(t)$ and the voltage on R₆, $v_{R6}(t)$, between J13 and GND (R₆ acts like a current transducer for $i_{L2}(t)$);
 - the control voltage $v_{emd}(t)$ and the voltage on R₇, $v_{R7}(t)$ between *J14* and *GND* (R₇ acts like a current transducer for $i_{C2}(t)$);

• the control voltage $v_{cmd}(t)$ and the output voltage $v_O(t)$. The output voltage is measured between *OUT* and *GND*, for *J14* connected to the ground.

Results

• Draw the waveforms for $v_{cmd}(t)$, $v_0(t)$, $v_{L2}(t)$, $i_{RL}(t)$, $i_{C2}(t)$, $i_{D3}(t)$, $i_{L2}(t)$ and $i_1(t)$.

2.2. Verifying the relationship between the output and the input voltage

Exploration

- Visualize the control voltage $v_{cmd}(t)$ and the output voltage $v_O(t)$, for $R_{L1}=200\Omega$ and compute V_O/V_I .
- Modify the value of the input voltage and the amplitude of the control voltage to 8V. Measure once again the output voltage and the variation of the output voltage, Δvo, and recompute Vo/V₁.

Results

- The value of V_0/V_I for $V_I=10V$.
- The value of V_0/V_1 for $V_1=8V$.

2.3. Variation of the output voltage ripple Δv_0 with load resistance

Exploration

- For the circuit in Fig.2 with R_{L1} apply once again v_{cmd} with a duty cycle δ =50%. Copy the values for v₀ and Δv_0 obtained in section 2.2.
- At the output, replace the load resistance R_{L1} with $R_{L2} = 250\Omega$, by disconnecting *R3* and connecting the jumper on the *R4* position. Visualize the control and the output voltages, measure the output voltage vo, as well as the variation of the output voltage, Δv_0 .

Results

- The values of V_0 and Δv_0 for δ =50% (copied from section 2.2.)
- Draw the waveforms for v_{cmd} (t) and $v_0(t)$, for RL2.
- The values of V_0 and Δv_0 for R_{L2} .

REFERENCES

1. Oltean, G., Circuite Electronice, UT Pres, Cluj-Napoca, 2007, ISBN 978-973-662-300-4

2. D. Petreuș, Ș. Lungu - Surse în comutație – îndrumător de laborator, Ed. Mediamira, Cluj-Napoca, 1999.

3. http://www.bel.utcluj.ro/dce/didactic/fec.htm

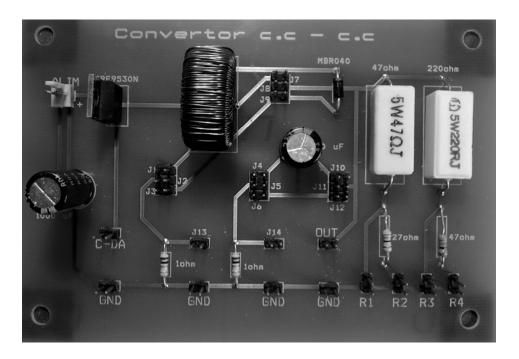


Fig. 3. Experimental assembly