
 

Chapter 1 

 

FUNDAMENTALS 
 

Introduction 
 

This chapter analyses the fundamental notions that everyone needs when 
exploring the field of electronics. 

We will start the chapter with the beginning, talking about electric signals and 
going further with the relations and theorems used in electronic circuits analysis. 
The voltage and current sources as well as the passive components (such as 
resistors, capacitors, and inductors) also find their place among the fundamental 
notions. Besides the time domain, the frequency domain with its representation of 
the frequency response of the circuits containing reactive elements is also 
approached. 

Thus, a great part of this chapter rather assumes a review of some notions and 
pieces of knowledge that have been previously studied. Besides these, a part of the 
terminology, conventions and notations used throughout the book are presented. 

At the end of this chapter we should be armed with means and working 
instruments just suited for understanding the operating principles of the electronic 
devices and their main applications. 

 
 

1.1 Electric Signals 
 
 By signal we understand any quantity that can offer information such as: sound, 
image, temperature, force, speed and so on. In the electronics, we are primarily 
interested in electric signals: 

• Electric voltage, denoted by v or V; unit of measure: volt V with its 
submultiples mV (1mV=10-3V), μV (1μV=10-6V); 

• Electric current, denoted by i or I; unit of measure ampere: A with its 
submultiples mA (1mA=10-3A), μA (1μA=10-6A). 



 Depending on the particular way they change in time, electric signals are 
classified in: 
-continuous signals which do not change their value in time and which are referred 
to as dc (direct current); 
-time-varying signals whose value changes in time and which are referred to as ac 
(alternating current). 
 As an example, Fig. 1.1.1a) shows a continuous voltage V=5V, whereas Fig. 
1.1.1b) shows a variable voltage, particularly a sine wave v=3sinωt V. 
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Fig. 1.1.1 The waveform of a: a) continuous voltage; b) sinusoidal voltage. 
 
 The parameters of a sinusoidal signal are: 

• Amplitude: A=3V; 
• Peak to peak value, which is the difference between the maximum and the 

minimum value of the signal: 6V; 
• Root-mean-square value of the signal             

12.2
2
==

AVrms V; 

• Period of the signal T=2ms; 
• Average value or the dc component on a time interval. For periodic signal, 

we calculate the average value on a period. The positive half-cycle  (+) and 
the negative half-cycle (-) of the sinusoidal waveform being equal, the 
average value of the voltage is zero;  

• Instantaneous value, which is the value of the signal at a certain moment in 
time. For example at t=T/4 the instantaneous value is +3V. 

 

 The sinusoidal waveforms are the most frequently used signals. Most of the 
electric appliances (computers, TV sets, refrigerators, etc.) are powered from the ac 
power line with a sinusoidal voltage with 230V value, 325V amplitude, and 50Hz 
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frequency. In the United States of America, the ac power line has 117V root-mean-
square value at a 60Hz frequency. 

Remarks: When measuring a sinusoidal voltage with a voltmeter, it will indicate the 
root-mean-square value of the voltage. 

Besides the sinusoidal wave, there are lots of other variable signals, the most common 
being:  triangle wave, square wave, sawtooth wave, positive or negative pulse, step, and 
spike signals. 
 

• Signal Sources. Notations 
 For electric signal sources, we will use the symbols shown in Fig. 1.1.2. 
 
 

       a)                              b)                           c) 

 
i V 

+

Fig. 1.1.2 Symbols for signal sources: 
a) voltage; b) dc voltage; c) current. 

v 
 
 
 
 
 
  
 
 
The sign “+” is occasionally used next to one of the source’s terminals to indicate 
the positive terminal. To differentiate through notations the different types of 
signals we will use the following convention (see also Fig. 1.1.3): 

• only continuous signal (dc value) – uppercase variable and uppercase 
subscript VS, IS ; 

• only time-varying signal – lowercase variable and lowercase subscript vs, is; 
• total instantaneous signal (continuous plus time-varying component) – 

lowercase variable and uppercase subscript vS , iS . 
 
 

R 

Fig. 1.1.3 Signal notation. 

  VS     + 
 
          -   
   vs      ~ 

vS=VS+vs 

iS=IS+is 
 
 
 
 
 
 
 
 
 
 
 Considering VS=5V and vs(t)=3sinωt[V], the total signal is vS(t)=5+3sinωt[V]. 
This voltage is also called a sinusoidal voltage having the amplitude of 3V and dc 
level of 5V. Its waveform is presented in Fig. 1.1.4. 
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    vS [V] 

Fig.1.1.4 vS=5+3sinωt [V]. 
t

 
 

1.2 Relations and Theorems of Electric Circuits 
 

 1.2.1 Ohm’s Law 
 
 Ohm’s law, named after its discoverer, the German physicist Georg Simon 
Ohm, states the relation of proportionality between the voltage drop across a 
resistor and the current through that resistor, the resistance R being the factor of 
proportionality. 
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s law 

 

Fig. 1.2.1 Ohm’
illustration. 

  I            R 
 
               V 
                 V’    

 
 
 
 

V=RI 

 If the arbitrary chosen directions for the voltage and current are opposite, than a 
minus sign appears in the Ohm’s law relation (Fig. 1.2.1). 

V’= - RI 
 
 1.2.2 Kirchhoff’s Theorems 
 
 Gustav Robert Kirchhoff (a German physicist), enunciated two fundamental 
theorems for the analysis of the electric circuits. 

• Kirchhoff’s first theorem or Kirchhoff’s current law (KCL): 
“The algebraic sum of all the currents entering and exiting any circuit node 
is zero at every instant.” 
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In this sum the currents that enter the node and those who exit it will have 
opposite signs. For the circuit node presented in Fig. 1.2.2, the KCL is expressed 
as: I1+I2-I3=0 

 

Fig. 1.2.2 Exemplification of KCL. 
 

•
        I1                          I2 
 
 
                     I3 

 
 
 

 
 
 
 Note: KCL can also be interpreted as: in any circuit node there is neither power 
consumption nor power generation, all the current that enters a node has to exit it.  

• Kirchhoff’s second law or Kirchhoff’s voltage law (KVL): 
“The algebraic sum of all the voltages around any closed circuit loop is zero 
at every instant.” 

For applying this theorem, one should choose an arbitrary direction of going 
over the circuit loop. The voltages that have the same direction as the direction of 
going over the loop will have the plus sign and the others the minus sign. For 
voltage sources we shall consider the voltage across its terminals and not the 
electromotive voltage. The expression of the KVL for the circuit in Fig. 1.2.3 is 
(the direction of going over the loop is clockwise): 

 

 Fig. 1.2.3 Exemplification 
of KVL.  

        R2 

 
       
       VR2 

                    VR1 
      I 
 
                       R1 

 
 
 
 
 
 
 

 
V1 

 
V2 

 
 

-V1+VR1+V2-VR2=0 

Or, if we consider the current I through the circuit: 

-V1+R1I+V2+IR2=0 

 
 1.2.3 Resistor Connections 
 

• The Series Connection 
 Two or more resistors are series connected if the same current flows through all 
of them (Fig.1.2.4). 
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  I        
            R1                   R2    
 
   
                      Req 

Fig. 1.2.4 Series 
connection of two 
resistors. 

Req=R1+R2 

 By series connection of two or more resistors we obtain a larger equivalent 
resistance than any of the individual resistances. 
 

• The Parallel Connection 
 Two or more resistors are parallel connected if the same voltage appears across 
each resistor, as shown in Fig. 1.2.5. 

21

21

RR
RR

R
eq +
=  

 of this relation will be left for the amusement of the r

he equivalent resist

 The proof eader. By the 

ance will be 

parallel connection of two or more resistors we obtain a smaller equivalent 
resistance than any of the individual resistances. 
 For n resistors (Ri) connected in parallel, t
determined using the formula:  

∑
=

=
n

i ieq RR 1

11  

  Tricks: 
 equivalent series (parallel) resistance of a high value resistor with a much 

  parallel connection: Req≈1KΩ.    
• one of 

easy to calculate: 20kΩ/3=6.67kΩ. 

Fig.1.2.5 Parallel 
connection of 
two resistors. 

            R1 

 
 

                      V 
  

 

 

                     R2 

                      
            Req 

• The
smaller value resistor can be considered equal to the higher (smaller) resistance. 
For R1=100KΩ and R2=1KΩ, we have: 
              series connection: Req≈100kΩ;    
For calculating the equivalent parallel resistance for a resistor of 10kΩ and 
20kΩ we can consider the 10kΩ as being two resistances of 20kΩ in parallel. So 
we have three resistors of 20kΩ in parallel. The equivalent resistance is now very 
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 These tricks are very useful because they ease the calculation so that we can 
focus on the analysis and design of the circuits. It is desirable to try to avoid the 

meters suffer from 

, as always). 

tions instead of looking at 

1.2.4 Resistive Dividers 

The voltage divider is one of the most widespread electronic circuit fragments. 
ontains voltage dividers. It produces at the output a 

temptation of calculating the values of the resistances and other circuit elements to 
many significant places. There are at least two reasons for this: 

a) the components themselves have a finite precision (typically the resistors 
have a 5% or 1% tolerance, the active devices para
manufacturing dispersion, etc.); 

b) a good circuit design is greatly insensible at the very precise values of the 
components (there are exceptions

 We can obtain a better and quicker understanding of the circuits if we get into 
the habit of mentally making approximate computa
precise numbers, with lots of decimals on the display of a calculator. 
 

 
 
 

• The Voltage Divider 
 
Any real electronic circuit c
predictable fraction of the input voltage, as one can see in Fig. 1.2.6. 
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The output voltage is proportional with the resistance across which
it and inversely proportional with the sum of the resistances. If the input vo

 we measure 
ltage 

 R1 

i 

Fig. 1.2.6 The voltage 
divider.

vO R2 

vI 
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rem

 vI=15V, we have only one equation and two unknowns R1 and R2. It would be a 
goo

ch allows the adjustment of the dividing factor 

r. 

justability of the division ratio. 

division ratio adjustable in 
ents in the circuit? 

 

ains the same and the value of R2 increases, the output voltage increases as 
well. 

 

Trick: If one is in need for a voltage divider that has to supply to the output vO=5V 
from a

d idea (unless there are no other restrictions) to impose the current through the divider 
I=1mA, in this case the sum of the resistances in KΩ is numerically equal with the input 
voltage and the value of R2 is numerically equal with the output voltage vO. So it results 
R2=5kΩ and R1=15KΩ-5KΩ=10KΩ. 

 

 The simplest adjustable voltage divider can be build up using a single adjustable 
resistor, called potentiometer, whi
(the fraction of the input voltage that we obtain at the output) between 0 and 1 (Fig. 
1.2.7). 
 The most common application of this divider is the volume control in an audio 
amplifie

Connecting a fixed value resistor in series with the potentiometer can reduce the 
range of ad

 

P 
R2 

R1 

 
 Example 1.2.1: 

How does  the  circuit of a voltage divider, with the 
ok like? What are the values of the elem

vI 

vO 

•

Fig.1.2.7 Adjustable
voltage divider. 

 
the range  [0.5; 1] lo
 Solution: 
  

•

input 

  R 
10K 

output 

  P 
10K 

Fig. 1.2.8 Adjustable divid
in the range [0.5;1]. 

er 
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• The Current Divider 
ider is presented in Fig. 1.2.9. 

                                                  KCL:      i=i1+i2 
=0 

 
Solving the above system of two linear equations with two unknowns, it results: 

 The circuit of a current div
 

i  
 

Fig. 1.2.9 The current divider. 
 

i1                                       i2  

 R1                     R2 

 
 
 
 
 
 
 

i  

                                                  KVL:    i1R1 - i2R2
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 If we consider i as the input current than any of the i1 and i2 currents can be 

  1.2.5 Superposition Method 

 Besides the Kirchhoff’s theorems, which are valid for a certain circuit, linear or 

sum of input 

 circuit’s response applying the signal x1, and f(x2) is the response 

 

considered as the output. The output current is not proportional with the resistance 
through which it flows but with the other resistance from the divider. If we keep i 
constant and R2 increases, the current i1 increases and the current i2 decreases. 
 
 
  
 
 
nonlinear, for linear circuits there also are some specific methods that simplify in a 
great deal the computation. One of these is the superposition method. 
  An electronic circuit is linear if the response of the circuit to a 
signals equals the sum of responses when each input signal is assumed to act alone 
in the circuit.     
 If  f(x1) is the
applying the signal  x2, than the response of the circuit applying the sum of signals 
x1+x2 is f(x1)+ f(x2). The response of a linear circuit driven with a sinusoidal 
signal will always be sinusoidal, even if the amplitude and the phase are modified. 
 As an example, let us first consider the circuit in Fig. 1.2.10a), where the
applied signals are the current sources i1 and i2, and the output signal is vo. 
 According to Ohm’s law: Rivo = ; or we say that the circuit’s function is: 
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2121 ))( RiRifxf LL (x +=+  

21212121 )()()( RiRiiiRiifxxf LL +=+=+=+  

 We notice that: 
)()()( 2121 xfxfxxf LLL +=+  

so the circuit is linear.  
g. 1.2.10 b) the current-voltage relation is of exponential  For the circuit in Fi

type: 

T

Dv
V

SeIi =  

  where IS is the saturation current and VT  is the thermal voltage. 

S
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I

 so the circuit function is: 
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 It is obvious that: 

S
T

S
T

S
T I
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I
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iV 2121 lnln ln +

≠+  

i2 

        Fig. 1.2.10 a) linear circuit; b) nonlinear circuit. 
a) b) 

i1 i2 i vD R vo vo 

D
i i1 
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 In other words: 

≠)()( 21 ifif NN + )( 21 iif N +  

 Therefore, the ci

 21

Fig.1.2.11 Application of the superposition method. 
c) 

VO2      IS 
4.5mA 

R1 
5K R2 

2.5K

IS 
4.5mA

VOVS 
18V 

 R1 
5K 

 R2 
2.5K

a) 

VO1  VS 
18V  

R1 
5K 

R2 
2.5K

b) 

rcuit is a nonlinear one. 
 

 The superposition method consists of the following: o analyze an active linear 
circuit with more than one source, one separately compute the circuit response 

sum of all these 

 1.2.11a) using the 
perposition method. 

 
Due to the two sources, we will have two distinct situations: 

1) Setting to zero the current source, it results the equivalent circuit in 
Fig. 1.2.11b) 

T

considering all the sources but one set to zero. The algebraic 
partial responses is the complete response of the circuit.      
 
 Example 1.2.2 
    Let us determine the voltage vO for the circuit given in Fig.
su

21

2
1 RR

RVO +
=  618

5.25
5.2

=⋅
+

=SV V 

                            2) Setting to zero the voltage source we obtain the equivalent circuit in 
Fig. 1.2.11c)   



53
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The total output voltage of the circuit is: 

V 

The total output voltage of the circuit is: 

621 621 =+= OOO VVV 1)5( 1)5( =−+ V 
 

1.2.6 Thévenin’s Theorem 

t any network of resistors and sources can be 
ep

e 

 
 
 

Thevenin’s theorem states tha
r laced with an equivalent circuit of a single voltage source, vTh, in series with a 
single resistor, RTh. The theorem is also called the equivalent voltage generator 
theorem. 
  How do you figure out the values of the equivalent voltage source and 
equivalent resistor? Quite easy: vTh is determined as being the open-circuit output 
voltage of the given circuit (without a load connected between its terminals); RTh is 
the equivalent resistance of the given circuit with all the sources set to zero.  

A source set to zero means: for a voltage source, the voltage across its terminals 
is zero (equivalent with a short-circuit) and for a current source, the current through 
the source is zero (equivalent with an open-circuit) as one can see in Fig. 1.2.12. 

I=0 
set to zero 

 Exampl
nin’s theorem for the circuit in Fig. 1.2.13a) we obtain th

e 1.2.3 
 Applying Théve
equivalent circuit (a real voltage source) shown in Fig. 1.2.13b)[Mir83]. 
 
 
 
 
 
 
 
 
 
 

B

IS 
1mA 

   R2  

20KΩ 

20KΩ 

R1 

B 

A 

a) 

  vS 
10V 

vTh 
15V 

10 KΩ 

RTh

b) 
Fig. 1.2.13 Application of the Thévenin’s theorem 

a) the initial circuit; b) the equivalent circuit. 

A 

set to zero V=0 V I

a) 
Fig. 1.2.1 et to zero a: a) voltage source; b) current source.  

b)
2 S
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Applying the superposition theorem we have the voltage vTh measured between  
the points A and B (Fig. 1.2.13a)): 
 

=
+

+
+

= SSTh I
RR

RR
v

RR
R

v
21

21

21

2 5+10=15V 

 The equivalent circuit to deduce RTh with the sources set to zero is the one in 

RTh=R1  ||  2=10KΩ 

 R  also has another meaning  the resistance seen between 

                                                          

Fig. 1.2.14. 
 

20K 
R2 A 

RTh 

20K 

R1 

Fig. 1.2.14 The equivalent circuit for RTh 

B 

 
 
 
 
 
 
 
 
 

 

R

Th
the two terminals of the circuit and it is called the output resistance (or internal 
resistance). This resistance can also be calculated by determining the short-circuit 
current at the AB terminals (Fig. 1.2.13a).                                                                     

, namely it represents

sc

Th
Th i

vR =  

 It is worth mentioning that there also exists the equivalent current generator 

  1.2.7 Millman’s Theorem 

Millman’s theorem [Mir83] expresses the potential of a circuit node as a 

 Millman’s theorem we have the 
expression: 

theorem (Norton’s theorem), but because it is rarely used we do not present it in 
this book. If some of you are interested in, recommended readings are [Mir83] and 
[Şor82]. 
 
 
  
 
 
function of the conductances of the branches adjacent to that node and the 
potentials of the neighbor nodes. All these potentials are measured in respect with 
the same reference point (usually the ground).  
 For the circuit in Fig. 1.2.15, according to
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 We remind that G =
R
1  is the conductance and its unit of measure is S 

 1.2.4 
  Let us determine the voltage drop V across the resistor R for the circuit in Fig. 

    We assume M as the reference point. The potential VN  in the point N is: 
 

(Siemens). 
 
    Example
  
1.2.16. 

GGG
GGVGVVN ++
⋅++ 2211 0  =

21
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Fig. 1.2.16 Application of 
Millman’s theorem. 
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10K 10K 
  R3 
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  V1 
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 V2 
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  V 

  N 

  M 

Vn 
Vk 

V1 
Gn 

Gk 

G1 

V Fig.1.2.15 Illustration of
Millman’s theorem. 

 24



 25

    1.2.8 Power 
 
    The power (work done per unit of time) corresponding 
1.2.17): 

ltage across the circuit and I the current through the circuit. The 
nit of measure of the power is W (watt) with its submultiple 1mW=10-3W and 

 

With the directions in the Fig. 1.2.17 (the voltage and the current have the same 
irection) we will consider:  
  P>0 – the power is consumed (dissipated); 
  P<0 – the power is generated. 

  

                     

to a circuit is (Fig. 

VIP =  

where V  is the vo
u
multiples 1KW=103W,  1MW=106W,  1GW=109W. 
 

 
 
 
 
 
 
 
d
  
  
 
  Example 1.2.5 
 
 
 
 
 
 
 

  5−=−=
R

VsI mA;         5' =−= II mA 

For the source is PS=VSI=10V·(-5mA W  by the 
urce. 
For the resistor is PR=VRI’=10V·5mA=50mW; the power is dissipated by the 

res
 In the above power calculation, on the source as well as on the resistor we’ve 

 )=-50m ; the power is generated
so
  

istor. 

considered the same direction for the voltage and for the current (the receptors 
convention). If we consider different directions for the voltage and for the current 
(the generators convention), the interpretation of power changes, namely P>0 is the 
generated power and P<0 is the consumed power. 

Electronic 
circuit 

I 

V 

I 

Fig. 1.2.17 The electrical 
power in a circuit 

VS 

I I’ 

VR 
2
 R 

K Fig. 1.2.18 Explanation 
for power computing. 



 Please notice that the power is conserving, namely the generated power is equal, 
in modulus, with the consumed power. 
 For the calculation of the power dissipated by resistors, the following equivalent 
relations are obtained (using Ohm’s law): 

RIP 2=     and   
R

VP =  

 

2

 load resistance RL should one use to 
transfer maximum power in the load from a given source with its internal 
resistance R (Fig. 1.2.19)?  

 

For extreme values of the load resistance: 

                  

hich the power transfer to the load is 

 RS  

 Try to prove the above affirmation. Lest the previous affirmation should induce 

resistance is much greater than the internal source 
resistance. 
 We mention that the real source f vious example can be the model of 

1.3 The Capacitor and the Inductor 

ctor: 
 The unit of measure for the capacitance is the Farad (F), with its submultiples: 

         1µF = 10-6 -9 -12

    The unit of m bmultiples: 
       1mH= 10  H, 1μH = 10 H. 

• Power Transfer 
Here is an interesting problem: what

S  
 RS 
 

 
 
 
 
 

 

∞=
=

L

L

R
R 0

)0(,0

0
2

2

===

==

IRIP

RIP

LRL

LRL  

 There is an intermediary value for R for w
maximum and this value is: 

RL  =

the wrong impression, we point out that, in practice, the electronic circuits are 
designed so that the load 

rom the pre
an equivalent Thévenin circuit output, for example of an amplifier. 
 
 

 
Fig. 1.3.1 presents the symbols for the capacitor and for the indu

  
 F, 1nF = 10  F, 1pF = 10 F. 

easure for the inductance is H (Henry), with its su
-3 -6

VS 
RL 

Real source Load 

Fig.1.2.19 Maximum power 
transfer for RL=RS. 
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 1.3.1 Current – Voltage Relation 

• Capacitor 
A capacit s q coulombs of 

harge on one plate and – q on the other. 
 

ge across and the current through the 

 Current – Voltage Relation 

• Capacitor 
A capacit s q coulombs of 

harge on one plate and – q on the other. 
 

ge across and the current through the 

  

or of C farads with v volts across its terminals haor of C farads with v volts across its terminals ha
stored cstored c

q=Cvq=Cv

As defining relation between the volta
capac tor, we use t

As defining relation between the volta
capac tor, we use ti he differential equation: i he differential equation: 

dt
dvCi =  

   The rate of change of the voltage determines the current through the capacitor. 
   As an example, if the voltage variation is of 1V/s across a capacitor with 

C=1F, the current through the capacitor is of 1A. In other words, if a capacitor of 
1F is supplied with a 1A current, its voltage changes by 1V per second. 

 

   Remarks: 

 

resistance R – conductance G 
capacitance C – inductance L 

two dual circuits, expressed 
in ir 83]. 

For an inductor, the rat mines the voltage across. 
The current-voltage relatio

• The greater the capacitance, the greater the current through the capacitor. 
• The rate of change of the voltage across a capacitor cannot be infinite because 

these would need an infinite current through the capacitor. The abrupt potential 
variation on a plate is also integrally transmitted on the other plate. 

• I nductor 
If you understand the behavior of the capacitor you will not have any problems 

with the inductor, the two being dual circuit elements. 
The following elements are dual: 

voltage v – current i 
We can use the duality principle: the equations of 

dual values have the same form. [M
e of change of the current deter
n is: 

dt
diLv =  

+C C 
L 

a) b)
Fig. 1.3.1 The symbol for: a) capacitor b)  inductor. 
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If a voltage of 1V is applied across an inductor with the inductance of 1H, the 
current through the inductor changes by 1A per second. 

 
 
 1.3.2 Capacitor and Inductor Connections   

y the series (parallel) connection of the capacitors, we obtain a smaller (larger) 
apacitance. 

 1.3.3 The DC Behavior 

 1.3.3.1 RC Circuit with a Voltage Source 

e connected in series, as shown in Fig. 1.3.4. 

The inductor’s behavior in a circuit can be deduced by duality with the 
capacitor’s behavior. 

 

 

Fig.1.3.2 The series connection of: a) capacitors b) inductors.

C1 C2  L1 L2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
B
c
 
 
  
 
  

Let us consider a simple circuit with a single capacitor, a resistor and a dc 
voltage sourc
 
 
 
 
 

21 CC
Ceq +

=  21CC

a) 

 21 LLLeq = +

b)

L1 

L2 

21

21

LL
LL

Leq +
=  

C1 

C2 

Ceq=C1+C2 

                        a)                                                          b) 
     Fig. 1.3.3 The parallel connection of: a) capacitors b) inductors. 

iC R 

C 
VI vC Fig. 1.3.4 RC series circuit with 

a dc voltage source. 
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We are interested in the time variation of the circuit quantities, particularly on 
the voltage across the capacitor vC(t) and on the current through the capacitor iC(t).   

Application of the KVL gives: 
VI=RiC+vC 

We also have the capacitor equation: 

dt
Ci C

C =  
 

dv

C
C

I v
dt

dvRC +=  

   W rder differential equation with the vC as 
unknown: 

V

e obtain an inhomogeneous, first o

0=−+ IC
C Vv

dt
dv

RC  

   Solving the equation and using the boundary con ions: 
      t=0; v =v (0) – the voltage across the capacitor at the initial moment; 

 the solution:  

dit
C C

     ∞=t ; vC=vC(∞ ) – the voltage across the capacitor at the final moment. 
   we obtain

)()1()0()( ∞−+⋅=
−−

C

tt

CC veevtv ττ  

g the second (s) as unit 

ed 
 

where τ=RC  is called the time constant of the circuit, havin
of measure. 

For the circuit presented in Fig. 1.3.4 we consider the capacitor fully discharg
)=0V. The final voltage that the capacitor reaches in anat the initial moment, vC(0

infinite long time ( τ>>t ) is the v ∞oltage of the input source vC( )=VI. 
The equation that describes the time evolution of he voltage across the 

capacitor is: 
 t

IC Vetv )1()( −=  

   The voltage waveform is presented in Fig. 1.3.5a): 
At the moment the capacitor charges up to 63% of its final 

t
−
τ

t=τ, value. The 
cap

lue. 
The waveform of the current through the capacitor is presented in Fig. 1.3.5b). 

acitor can be considered fully charged after the time  t=5τ, when it reaches 99% 
of its final va

RC
tvVti CI )()( −

=  
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he current through the capacitor has its maximum value at the initial 

mo e

 
 
 
 
 
 
 
 
 
 
 
 
 
 
T

m nt
R

Vi I
C =)0( , because the entire urc

vo ge a r in urren
striving to zero after τ. 

n nsient  
reg e s, the 
cu

so e voltage falls across R. Once the 

lta cross the capacito creases, the c t through the circuit decreases, 
 t=5

 I the RC circuit powered by a  continuous  voltage source, after the tra
  t∈(0; 5τ), follows the steady-state regime in which nothing happenim

rrent being zero. 
 

Remark: The interpretation of the above affirmation can be: in dc, after the transient 
regime, the capacitor can be considered an open-circuit. 
 
    1.3.3.2 Charging the Capacitor at Constant Current 
    We consider a circuit containing a capacitor and  a dc current source (Fig. 1.3.6) 
 
 
 

vC 

 
iC 

a

 C 
 
 
 
 
 
 
 

) 

Fig. 1.3.6 A constant current source charging a capacitor: a) circuit; 
b) the voltage across the capacitor. 

t 
0 

Islope 1
=  

C

b)

vC 
I 

       τ      2τ     3τ     4τ    5τ     6τ 

Transient 
regime 

Steady-state 
regime 

R
VI

R
VI37.0

Fig.1.3.5 Voltage and current waveforms for the circuit in Fig. 1.3.4. 
b) 

      τ      2τ     3τ    4τ    5τ     6τ 

Transient regime Steady-state 
regime 

v

0.63VI 

a) 

C 

VI 

t t 



In the initial moment the capacitor is assumed to be discharged vC(0)=0V. The 
urrent through the capacitor is constant in time iC(t)=I, therefore we have: 

vC(t)=

c

∫
t

C dtti
C 0

)(1  

It
C

tvC
1)( =  

The voltage across the capacitor increases linearly in time (Fig. 1.3.6b)). If the 
circuit runs for a given duration, the voltage increases continuously running the 
risk of destruction of the capacitor or of the source. If at a certain moment, the 
direction of the current is reversed, the capacitor will discharge. 
 

 
    1.3.4 The AC Behavior 
 

lements. For these 
lements, the reactance X is defined: 

Circuits containing capacitors and inductors are more complicated than the pure 
resistive circuits, in that their behavior depends on frequency. For example, a 
voltage divider containing a capacitor or an inductor will have a frequency 
dependent division ratio. 

The capacitor and the inductor are known as reactive circuit e
e

C
X C ω

XL=ωL ;     for the inductor 

The unit of measure for the reactance is the same as for the resistance

1
= ;   for the capacitor 

[ ]Ω . 
Another term used with circuits containing reactive elements is that of 

impedance, denoted by Z. The impedance is a general term, it is a “generalized 
resistance” [Hor97]: 

( )CL XXjRZ −+  =

The reactance is the im
The capacitive impedance, Z  are: 

aginary part of the impedance. 
Z  and inductive impedance, C L

LLCC jXRZjXRZ +=−= ; ; 

where 1−=j . 
For the ideal capacitor and inductor (R=0) the impedances are complex 

numbers: 

LjZjZ ω=−== ;11
CCj LC ωω
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The reactance of a capacitor (inductor) decrease (increases) when the 
frequency s. Therefore, in dc (f=0Hz) a capacitor is equivalent with a open-
circ ∞), while an inductor is equivalent with a short-circuit (X → 0). 

1.4 Generalization of Electric Circuits Theorems and 

tors) 
l the relations and theorems of electric circuits (see paragraph 1.2), have to be 
formulated. All these relations and theorems are still valid (respecting the 

applic  the 
imped

• The Generalized Ohm’s Law: 

s 
 increase

uit (X →C L

 

Relations 
 
   When the analyzed circuits contain reactive elements (capacitors and induc
al
re

ability conditions) just that instead of the resistance we will use
ance. 

 

 

 
 
 

Z 
I 

V=ZI 

Fig.1.4.1 The generalization 
of Ohm’s law. 

I
fCπ2

1 .    If, for example, Z=Zc=
Cjω

1  the voltage is given by V=

• The connection of impedances will r tors. For 
example two series impedances Z1 a pedance 
Z=Z1+Z2. 

If:  

Z1=Z

eplace the connection of resis
nd Z2 have the equivalent im

C=
Cjω 2 L

1    and  Z =Z  =jωL 

      Z=
Cjω

1 + jωL=j(-
Cω
1 +ωL) 

he divid• T
relationships are 

ers can contain impedances instead of resistors. The calculus 
still valid, simply replacing R with Z. In general, the 

division ratio depend
• The superposition theorem can be applied for circuits with C and L, using 

the corresponding impedances, but, don’t forget, only for linear circuits. 
• Thevenin’s theore ircui ents are included must 

be restated: any network of resistors, capacitors, inductors, and sources can 
be replaced with an equivalent circuit of a single voltage source in series 

s on frequency. 

m for c ts where reactive elem
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with a single complex impedance.  
• Millman’s theorem expresses the potential of a circuit node as a function of 

the complex admittances of the branches adjacent to that node and the 

and 
potentials of the neighbor nodes. All these potentials are measured towards 
the same reference point (usually the ground).  By admittance we underst
the inverse of the impedance, it is denoted by Y and its unit of measure is S 
(Siemens). 

Y= 1  
Z

The admittance of a capacitor is YC=jωC and of an inductor is 
Lj

YL ω
1

= . 

 
 

1.5 Frequency Response 
 

If a linear circuit is driven by a sine wave signal, the output will be a sinusoid of 
the same frequency. The output signal, however, could have a different amplitude 
and  in terms of the 
changes it causes in the amplitude and phase of sinusoids of various frequencies 
applied at the input. 

 
 
1.5.1 The Complex Transfer Function 

 phase than the input signal. Thus, a circuit can be characterized

 
To evaluate the frequency response of a certain circuit one has to use the 

complex transfer function. The complex transfer function F(jω) is a characteristic 
of the circuit and it completely describes its frequency response: 

( ) ( )
( )ω
ω

ω
jx
jxjF

I

O=  

wh usoidal signals for the input and 
respectively

Derive the complex transfer function of the two-port network  in Fig. 1.5.1. 
Solution: 

ere xI(jω), xO(jω) denote the complex sin
 for the output. These signals can be either voltages or currents. 

The study of the frequency response of a circuit is in fact reduced at the study of 
the transfer function F(jω). 

 

Example 1.5.1 

( )
)(
)(

ω
ω

ω
jv
jvjF

I

O=  
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R  

 
 

 

 
 
vO(jω) can be deduced considering a voltage div by the input voltage 
vI(jω) that divides itself across the capacitor impedance ZC and across the resistor’s 

pedance ZR. 

 the input voltage 
vI(jω) that divides itself across the capacitor impedance ZC and across the resistor’s 

pedance ZR. 

ider driven 

imim

( )( ) ( )ωω jv
ZZ

Zjv I
CR

C
O +

=  

( )
CR ZZ +

 
   Substituting the impedances, we obtain: 

CZjF =ω  

( )

Cj
R

CjjF

ω

ωω 1

1

+
=  

( )
RCj

jF
ω

ω
+

=
1

1  

 The transfer function, being a complex number, is characterized by its 
magnitude and phase: 

                                          Magnitude: ( )
( )21

1

RC
j

ω
ω

+
=  F

                                       Phase: ( ) ( )Carctg Rωω −=Φ  

 Both the magnitude and the phase depends on the frequency (more precisely 

    1.5.2 Frequency Response Representation 

• Logarithmic Scale 
For the representation of the magnitude of the transfer function, we use a system 

of coordinates having on the abscissa the frequency (or the angular frequency). 

depends on angular frequency ω=2πf). The graphical representation of these 
functions gives us a clear image on the frequency response of the circuit. 
 
 

 

Fig. 1.5.1 RC circuit. 
C vO(jω) vI(jω) 
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Taking in consideration the very wide range of the frequency, from hertz to 
megahertz, the use of a linear scale is almost impossible. That is why it is used a 
nonlinear, logarithmic scale, which has the property of “expanding” small values 
nd “compressing” high values, allowing the representation of a very large 
ariation interval. 

 

 values. The interval between two values, in a ratio of 10 (or 
1/1 s the interval between 1 and 10, or 
et een 1000 and 100. On a logarithmic scale equal distances correspond to equal 
tios. 

 

• Decibels 
On the transfer function m gnitude axis one can use values expressed as a ratio, 

a
v

The logarithmic scale is shown in Fig. 1.5.2. 
 

 
 

 
 
 

The origin of the axis is considered to be the unity value. On the axis, we write 
the values as powers of ten, but what we measure on the axis is the decimal 
logarithm of these

0), is called a decade. For example a decade i
b w
ra

a
( )ωjF  as well as values expressed in decibels, as a decimal logarithm of the ratio, 
( )

dBjω : 

( )
F

( )ωω jFjF dB lg20=  

   The decibel is a sub multiple of the bel, which is the decimal logarithm of the 
ratio of two powers, when this ratio is equal with 10. 
    The correspondence between the transfer function magnitude values expressed 

pressed in decibels is shown in Fig. 1.5.3. as a ratio and ex
 

 

 

 

 

 

 
 
 
 
 
 

103 0.1 

1
10lg  

100
lg1000  

0.01 1 10 100 104 Fig.1.5.2 Logarithmic scale. 

0.01 
0.1 

1 

10 

100 

 1000

( )ωj  ( )F

- 40 

40 

60 

dBjF ω  

20 

Origin 

- 20 
0 

Fig.1.5.3 The correspondence between the 
transfer function magnitude values as a ratio 
and as decibels. 

 35



( ) 1=ωjF    If the output signal is equal to the input one, , the magnitude of the 
ansfer function in dB is ( ) 0=dBjF ωtr , which can be considered as the origin of 
e axis. 

For an amplifier, when the output signal is greater than the input one, we 
av

th

e ( ) 0>dBjF ω , and for a circuit that attenuates, the output signal is smaller 

an the input one, and we have

h

( ) 0<dBjF ω . th
 
• Graphical representation 

 The magnitude response for the circuit in Fig. 1.5.1 is given by:   

( )
( )21

1

RCω+
 jF ω =

dering extrem
→0 ;     

We will deal first with the asymptotic representation of this function, 
consi e values for ω: 

ω  ( ) 1=ωjF  

1 ;      ( )
RC

jF
ω

ω 1
≈  ωRC>>

The magnitude curve is closely defined by the above two straight line 
asymptotes as it is represented in Fig. 1.5.4b) with broken line. The two asymptotes 
of the magnitude response curve meet at the corner frequency, or break frequency 
or cutoff frequency ω0 =2πf0, whose value is obtained by equaling the two 
functions.                

RC0

11=                
RC

f
ππω 2
1

2
1

0
0 ==  

ω RC0 =
1

          ω

0

1
ω

=RC , the transfer function can be written as: Substituting

( )

o
j

jF

ω
ω

ω
+

=
1

1  

with the magnitude:     and phase:   ( )
0ω
ωω arctg−=Φ  ( )

2

0
1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

ω
ω

ωjF
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he real value of the magnitude at the break angular frequency is: 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
  

T  

( ) 707.0
2

1

11

1
20 ≅=

⎟
⎠
⎞

⎜
⎝
⎛+

=

RC
RC

jF ω  

   The real magnitude response curve is plotted with full line in Fig. 1.5.4a). If it is 
easured in decibels, the value of the magnitude at the corner frequency is: m

20)( 0 =dBjF ω lg 3
2

1
−= dB 

For frequencies much smaller than the break frequency, the amplitude of the 
output signal is equal to the one of the input signal ( 1)( =ωjF ). From the real 
magnitude response curve (Fig. 1.5.4a)) we notice that on approaching the break 
frequency the amplitude of the output signal decreases. It becomes, at the break 
frequency, 0.707 from the maximum signal amplitude. Therefore, when passing 
through the circuit, all the signals having the frequencies at most equal with the 

a) 

00 
-450 

-900 

 

-0.707 

0.1 -2

0.01 

-3 

0 

-40 

( ) ( )
dBjω  ω  jF F

RC
01.0  RC

1  
RC

1.0  RC
10  

RC
100  

ω 

Ф(ω) 

ω 

b)

RC
1.0  

RC
1  

RC
10  

Fig.1.5.4 Frequency response of the LPF circuit in Fig.1.5.1: 
a) the magnitude response; b) the phase response. 



break frequency are attenuated with at most 30%, or with 3dB. 
The band of frequency over which the magnitude of the transfer function is 

almost constant, to within a certain numbers of decibels (usually 3dB), is called the 
circuit bandwidth (or bandpass). Bandwidth of a signal is a measure of how rapidly 
it fluctuates with respect to time. Hence, the greater the bandwidth, the faster is the 
variation in the signal. 

For our circuit the bandwidth is: 

RCπ
1B

2
=  

Outside of the bandpass, the magnitude of the transfer function is inversely 
proportional with the angular frequency:  

( )
RC

jF
ω

ω 1
=  

The slope of the magnitude response curve, outside the bandpass is - 
20dB/decade. We say that the attenuation outside the bandpass is of - 20dB/decade.  

The circuit that allows the low-frequency signals to pass and attenuates the 
hig

 0;     Ф(ω )= -arctg 0 = 0 

                                            ω → ∞;      Ф(ω ∞ = -900 

                                            ω = ω ;      Ф(ω )= -arctg 1 = -450 

ell below the break frequency) down to -
900 (at frequencies well above the break frequency), with a value of -450 at the 
break frequency. 

 
Th

h-frequency signals is called a low pass filter, LPF. There also are high pass 
filters HPF, band pass filters BPF and stop band filters SBF.  

The phase of the transfer function is: 

Ф(ω )= -arctg(ωRC) 

For:                                       ω →

 )= -arctg 

0

The phase response of the transfer function is presented in the Fig. 1.5.4.b). The 
phase shift goes from 00 (at frequencies w

A RC high pass filter is presented in Fig. 1.5.5, its frequency response being 
plotted in Fig. 1.5.6. 

vO(jω)

R 

v (jω) I C 
Fig.1.5.5 RC high pass filter. 

e transfer function is: 
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( )
RCj

RCjjF
ω

ωω
+

=
1

 

( )
( )21 RC

RCjF
ω

ωω
+

= ;                  Ф(ω)=90-arctgωRC 

The break frequency is 
RC

f
π2
1

0 = , the bandpass at 3dB attenuation is: 

B [f0; ∞], the attenuation outside the band is 20dB/decade; the phase shift 
at the break frequency is 450. 
    Remark: For both LPF and HPF, at frequencies greater than 10f0 the slope of the 
magnitude response curve is with 20dB/decade smaller than the slope at frequencies 
smaller than 0.1f0. Also the phase shift is with 900 smaller. On the asymptotic 
representation of the magnitude response we say that the break frequency introduces an 
attenuation of 20dB/decade. 
    
 Example 1.5.2 
    Fig. 1.5.7 presents the magnitude response of a BPF amplifier. What are the 
bandpass and the gain in the bandpass of the amplifier? What is the expression of 
the transfer function? 

∈ 

0 
-3 

0.01

0 

F(j

900 

45

[dB] ω) 

f0 0.1f0 f0 10 f0 100 f0 

f 

-20 

Slope 
20dB/dec. 

0 

0.01 f0 0.1 f0 f0 100 f0 f 

Ф(ω) 

Fig. 1.5.6 Frequency response for a high pass filter. 

 

-40 
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   fL=1KHz and f =10MHz where 
we have a gain of 37d 3d ller than the maximum gain of 40dB. The 

bandpass is B 1KHz;10MHz]. The gain in the bandpass is 40dB, or measured as 
a ratio of the output and input signals it is 100. 
 

 Soluti
 We notice that there are two break frequencies 

on:  
H

B, with B sma

( ) [dB]ωjF  

60 

40 
37 

20 

10 102 103 104 105 106 107 f[Hz] 
Fig. 1.5.7 Magnitude response of a band pass type amplifier. 

0 108 109 

∈[

    The circuit transfer function has to present two break frequencies, so the 

denominator must be a product of the following type ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

HL
jj
ω
ω

ω
ω 11  

numerator has to have an expressio

. The

n of the form 
1

hat w
ω

e are 

coming from the origin ω=0, with the slope of 20dB/dec. ωL  and ωH  are read by 
ins

ωj  which shows t

pection from the graphic: 
3102 ⋅= πωL ;    7102 ⋅= πωH  

 mined using the ω1 is deter condition that at the frequency   f=10 Hz, 
( ) 0=dBjF ω dB 

( )
⎟
⎠⎝⎠⎝⎠⎝ ⋅⎠⎝ ⋅ 7373 1010102102 ππ
⎞

⎜
⎛ +⎟
⎞

⎜
⎛ +

=
⎟
⎞

⎜
⎛ +⎟
⎞
⋅

11

10

1

102
fjfjjj ωω

π

⎜
⎛ +1

=

fjj
jF

ω

ω  

   We leave it to the fun of the reader to deduce the phase Ф(ω) and to sketch the 
phase response. 
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