ELECTRONIC DEVICES

Assist. prof. Laura-Nicoleta Ivaniciu, Ph.D.

C2 - Diodes. DR circuits.
C2 - Diodes. DR circuits.

Contents

- Physical structure. Symbol.
- Current-voltage characteristic
- Operating regions
- Operating (quiescent) point
- Parameters of the diode
- Constant voltage drop model
- Analysis of two-port DR networks
Physical structure – *pn* junction

![Diode symbol](image)

Anode (A)

Cathode (K)

Circuit symbol

Directions for current and voltage

The arrow in the diode’s symbol indicates the direction of the forward current flow.
The current flowing through the diode is controlled by the voltage drop across the diode itself – **nonlinear** semiconductor device.

Diode equation – William Shockley (Bell Labs, 1950)

\[
i_D = I_S (e^{nV_T} - 1)
\]

- \(I_S\) - saturation current (~ nA - pA)
- \(n=2\) discrete diodes
- \(n=1\) integrated diodes

Thermal voltage

\[
V_T = \frac{KT}{q}
\]

- \(K\) - Boltzmann’s constant
- \(q\) - elementary charge (electric charge carried by a single electron)
- \(T\) - absolute temperature measured in K

\[
V_T = 25 \text{mV} \ @ \ 20^\circ \text{C}
\]
Exponential model of the diode (valid in forward and reverse regions)

\[i_D = I_S (e^{nVT} - 1) \]

\[i_D \approx I_S e^{nVT} \]

Threshold voltage
\[V_{Th} \approx 0.6V \]

Mind the scale for the Y-axis!
Numerical illustration

\(D\) is a rectifier diode, 1N400x with \(I_s = 14\) nA, \(n = 2\)

Assuming a voltage drop across the diode

\[v_D = 0.7\,\text{V}\]

the current through the diode results as:

\[i_D = 14 \cdot 10^{-9} \left(e^{2.25} - 1\right) = 16.8\,\text{mA}\]
C2 - Diodes. DR circuits.

\[i_D = I_S \left(e^{nV_T} - 1 \right) \]

Operating regions

Forward bias \(v_D > 0V \)

Reverse bias \(v_D < 0V \)

\(V_{Th} \approx 0.6 \, V \)

\(\{ \)

- (off) \(v_D < V_{Th}; \quad i_D = 0 \)
- (on) \(v_D > V_{Th}; \quad i_D > 0 \)
C2 - Diodes. DR circuits.

\[Q(V_D; I_D) \]

Operating (quiescent) point

Illustration for 1N400x with \(I_S = 14 \text{ nA}, \ n = 2 \)

\begin{align*}
Q1(0.3V; 0mA) \\
Q2(0.7V; 14.5mA) \\
Q3(0.78V; 70.8mA)
\end{align*}
Operating (quiescent) point

Temperature dependence

\[i_D \approx I_S e^{nV_T} \]

\(I_S, V_T \) - depend directly on the temperature.

At a constant current, the voltage across the diode decreases by \(\sim 2 \text{ mV} \) for every \(1^\circ \text{C} \) increase in temperature.

\[TC = -2 \frac{\text{mV}}{^\circ \text{C}} \quad \text{negative temperature coefficient} \]

\[v_D(T_2) = v_D(T_1) + TC \cdot (T_2 - T_1) \bigg|_{I_D = \text{cst}} \]

At a constant voltage across the diode, the current increases with the temperature.
The parameters of the diode are defined (and computed) in the operating (quiescent) point, $Q(V_D, I_D)$

- Static parameters – defined in static regime (dc)
 - static resistance r_D

- Dynamic parameters – defined in variable regime (ac)
 - *a.k.a.* small signal parameters
 - dynamic (small signal resistance) r_d
C2 - Diodes. DR circuits.

Parameters of the diode

Static parameters

\[r_D = \frac{V_D}{I_D} \]
\[g_D = \frac{1}{r_D} = \frac{I_D}{V_D} \]

Example:

\(Q_1(0.65\,\text{V}; 5.4\,\text{mA}) \)
\[r_{D1} = \frac{0.65}{5.4} = 120\,\Omega \]

\(Q_2(0.7\,\text{V}; 14.5\,\text{mA}) \)
\[r_{D2} = \frac{0.7}{14.5} = 48.3\,\Omega \]

\(Q_3(0.78\,\text{V}; 70.8\,\text{mA}) \)
\[r_{D3} = \frac{0.78}{70.8} = 11\,\Omega \]

As the current increases, the diode goes in deeper conduction and its static resistance decreases.
Dynamic (small signal) parameters
A small ac signal is superimposed on the dc quantities

\[v_D(t) = V_D + v_d(t) \]
\[i_D(t) = I_D + i_d(t) \]

Dynamic (small signal) resistance:

\[r_d = \frac{v_d}{i_d} \bigg|_Q \quad \text{or} \quad r_d = \frac{\delta v_D}{\delta i_D} \bigg|_Q \]

Small signal approximation:
linear region around Q

\[r_d = \frac{nV_T}{I_D} \]
 Parameters of the diode

Interpretation of r_D and r_d

D modelling in the OP

OPTIONAL
Example

a) Draw the dc equivalent circuit.

b) Assuming Q(0.64V; 4.7mA), what is the value of the static resistance?

c) Draw the small-signal equivalent circuit.

d) What is the value of the small-signal resistance in Q?
C2 - Diodes. DR circuits.

Constant voltage drop model

\[v_D < 0.7 \text{ V} \]

\[D - \text{(off)} \]

\[v_D > 0.7 \text{ V} \]

\[D - \text{(on)} \]

\[\begin{cases} v_D < 0.7 \text{ V} \\ i_D = 0 \end{cases} \]

\[\begin{cases} v_D = 0.7 \text{ V} \\ i_D > 0 \end{cases} \]
C2 - Diodes. DR circuits.

Analysis of two-port DR networks

- Circuit with a dc voltage source and a resistor

![Circuit with a dc voltage source and a resistor](image)

Diode equation: \(I_D = I_S e^{n V_T} \)

KVL: \(V_I = I_D R + V_D \)

\[\begin{align*}
\text{Diode equation:} & \quad I_D = I_S e^{n V_T} \\
\text{KVL:} & \quad V_I = I_D R + V_D
\end{align*}\]

Two solving methods:

1. Graphical method
2. Numerical method (successive approximation)

Compute \(Q(V_D, I_D) \)

Transcendental equation

\[V_I - V_D = R I_S e^{n V_T} \]

Laura-Nicoleta IVANCIU, Electronic devices
C2 - Diodes. DR circuits.

Analysis of two-port DR networks

Graphical method

Diode equation:

\[I_D = I_S e^{nV_T} \]

KVL (load line equation):

\[V_I = I_D R + V_D \]
Graphical method

Effect of R on the quiescent point, Q

![Graphical representation of the effect of R on the quiescent point Q. The diagram shows the quiescent point Q for R and Q_1 for $R_1 > R$.](image)
Numerical method - simplified

Assume the voltage drop across the diode \(V_D = 0.7 \, V \) and compute the current \(I_D \) using the load line equation

\[
V_D = 0.7V \\
I_D = \frac{V_I - V_D}{R}
\]
Example

What is the operating (quiescent) point Q of the diode D?

$V_D > 0.6V \quad D - \text{(on)}$

Assume $V_D = 0.7V$ across the conducting diode

$I_D = \frac{V_I - V_D}{R} \quad I_D = \frac{9 - 0.7}{0.5} = 16.6mA$

$Q(0.7V, 16.6mA)$
Numerical method - iterative

1. Consider an initial value of diode voltage, eg. $V_D^{(0)} = 0.7$ V and compute current $I_D^{(0)}$ using the load line equation

 \[(V_D^{(0)}, I_D^{(0)}) - \text{initial solution}\]

2. Using $I_D^{(0)}$, compute voltage $V_D^{(1)}$ from diode equation, then current $I_D^{(1)}$ from the load line equation

 \[(V_D^{(1)}, I_D^{(1)}) - \text{solution after first iteration}\]

Repeat step 2 if more accurate values are required.

For quick, first order analysis of the circuit, the initial solution is considered!
V_i = 3 V, \ R = 0.5 \ K\Omega, \\
D is 1N400x, \ I_S = 14 \ nA, \ n = 2.

What is the operating (quiescent) point Q of diode D?

Quick, first order analysis:

\[V_D > 0.6V \quad \text{D – (on)} \]

Assume \(V_D = 0.7 \ \text{V} \) across the conducting diode

\[
I_D = \frac{V_I - V_D}{R} \quad I_D = \frac{3 - 0.7}{0.5} = 4.6\text{mA} \quad Q(0.7\text{V}, 4.6\text{mA})
\]
Example

Detailed analysis

\[I_D = \frac{V_I - V_D}{R} \quad I_D = I_S e^{nVT} \quad V_D = nV_T \ln \left(\frac{I_D}{I_S} \right) \]

Step 1

\[V_D^{(0)} = 0.7V \quad I_D^{(0)} = \frac{3 - 0.7}{0.5} = 4.6mA \]

Step 2

\[V_D^{(1)} = nV_T \cdot \ln \left(\frac{I_D^{(0)}}{I_S} \right) = 2 \cdot 0.025 \cdot \ln \left(\frac{4.6mA}{14nA} \right) = 0.635V \]

\[I_D^{(1)} = \frac{V_I - V_D^{(1)}}{R} = \frac{3 - 0.635}{0.5} = 4.73mA \]

Step 3

\[V_D^{(2)} = nV_T \cdot \ln \left(\frac{I_D^{(1)}}{I_S} \right) = 2 \cdot 0.025 \cdot \ln \left(\frac{4.73mA}{14nA} \right) = 0.637V \]

\[I_D^{(2)} = \frac{V_I - V_D^{(2)}}{R} = \frac{3 - 0.637}{0.5} = 4.726mA \]

\[Q(0.637V; 4.726mA) \]
Summary

Our first encounter with the diode revealed details regarding:

- Physical structure. Symbol.
- Current-voltage characteristic
- Operating regions
- Operating (quiescent) point
- Parameters of the diode
- Constant voltage drop model
- Analysis of two-port DR networks

Next week: DR switching circuits.