CIRCUITS WITH D, ZD, LED

PREPARATION

To revisit:

- Diodes - operating regions, states, diode's equations for the constant voltage drop model
- Zener diodes - operating regions, states
- LEDs - operating regions, difference between diodes and LEDs

P1.
Assume the constant voltage drop model for D , with $\mathrm{v}_{\mathrm{D}, \text { on }}=0.7 \mathrm{~V}$, and $\mathrm{R}=2 \mathrm{k} \Omega$.
a) Deduce and plot the $\mathrm{VTC} \mathrm{vo}_{\mathrm{o}}\left(\mathrm{v}_{\mathrm{I}}\right)$ for $\mathrm{v}_{\mathrm{I}} \in[-10,10]$ [V]. What is the application of the circuit?
b) Plot $v_{I}(t)$ and $v_{o}(t)$ for $v_{I}(t)=10 \sin \omega t[V]$. Specify the state of the diode (on/off) on the plot.

c) Mark v_{R} on the circuit. Plot $v_{I}(t), i_{R}(t)$ and $v_{R}(t)$.
d) Compute v_{O}, v_{R} and i_{R} for $v_{I}=5 \mathrm{~V}$. What is the state of D in this case? Justify your answer.
e) Assume D is replaced with a resistor, R_{1}, and $R_{1}=R$. Find the new expression of $v_{0}(t)$. Draw $v_{I}(t)$ and $v_{o}(t)$ for $v_{I}(t)=10 \sin \omega t[V]$.

P2.
Assume the constant voltage drop model for diodes, with v_{D}, on $=0.7 \mathrm{~V}$, and $\mathrm{v}_{\mathrm{I}}(\mathrm{t})=7 \sin \omega \mathrm{t}[\mathrm{V}]$.
a) Deduce the expression $v_{o}\left(v_{\mathrm{I}}\right)$. What is the application of the circuit?
b) Plot $v_{\mathrm{I}}(\mathrm{t})$ and $\mathrm{v}_{\mathrm{O}}(\mathrm{t})$. Specify the states of the diodes (on/off) on the plot.
c) Plot $\mathrm{v}_{\mathrm{I}}(\mathrm{t})$, $\mathrm{i}_{\mathrm{D} 1}(\mathrm{t})$ and $\mathrm{i}_{\mathrm{D}}(\mathrm{t})$.
d) What is the minimum amplitude of $v_{I}(t)$ for which $\mathrm{i}_{\mathrm{D} 1}(\mathrm{t})$ and $\mathrm{i}_{\mathrm{D} 4}(\mathrm{t})$ exist (are not zero)? Justify your answer.
e) Assume D_{4} - open circuit. Redraw $\mathrm{v}_{\mathrm{I}}(\mathrm{t})$ and $\mathrm{vo}_{\mathrm{o}}(\mathrm{t})$.

P3.
$\mathrm{V}_{\mathrm{Z} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{Z} 1}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D} 1, \mathrm{on}}=\mathrm{V}_{\mathrm{D} 2, \mathrm{on}}=0.7 \mathrm{~V}$, $\mathrm{v}_{\mathrm{I}}(\mathrm{t})=12 \sin \omega \mathrm{t}[\mathrm{V}]$.
a) What are the minimum and maximum values of $v o(t)$? Specify the operating region of the Zener diodes (forward/ reverse bias/ breakdown) for each case.
b) Deduce and plot the VTC $\mathrm{vo}_{\mathrm{o}}\left(\mathrm{v}_{\mathrm{I}}\right)$.
c) Mark $v_{R}(t)$ on the circuit. Plot $v_{I}(t)$, $v_{O}(t)$ and $v_{R}(t)$.
d) Compute v_{o} and specify the states of both Zener diodes for $v_{I}=-7 \mathrm{~V}$ and $\mathrm{v}_{\mathrm{I}}=5 \mathrm{~V}$.
e) Replace ZD 2 with a regular diode. Draw the new circuit. Compute the new minimum and maximum values of the output voltage.

P4.

$\mathrm{V}_{\mathrm{Z} 1}=5.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{Z1}}=8.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{D} 1, \mathrm{on}}=\mathrm{V}_{\mathrm{D} 2, \text { on }}=0.7 \mathrm{~V}$, $\mathrm{V}_{\mathrm{I}}(\mathrm{t})=15 \sin \omega \mathrm{t}[\mathrm{V}]$.
a) What are the minimum and maximum values of $v o(t)$? Specify the operating region of the Zener diodes (forward/ reverse bias/ breakdown) for each case.
b) Deduce and plot the VTC $\mathrm{vo}_{\mathrm{o}}\left(\mathrm{v}_{\mathrm{I}}\right)$.
c) Mark $v_{R}(t)$ on the circuit. Plot $v_{I}(t), v_{O}(t)$ and $v_{R}(t)$.
d) Compute vo and specify the states of both Zener diodes
 for $\mathrm{v}_{\mathrm{I}}=-7 \mathrm{~V}$ and $\mathrm{v}_{\mathrm{I}}=5 \mathrm{~V}$.
e) Reverse the orientation of ZD2. Draw the new circuit. Compute the new minimum and maximum values of the output voltage.

P5.
$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{ZD} 8 \mathrm{~V} 2, \mathrm{~V}_{\mathrm{ZD}, \text { on }}=\mathrm{V}_{\mathrm{D}, \text { on }}=0.7 \mathrm{~V}, \mathrm{v}_{\mathrm{I}}(\mathrm{t})=12 \sin \omega \mathrm{t}[\mathrm{V}]$.
a) What are the minimum and maximum values of $v_{o}(t)$? Specify the states of D (on/off) and ZD (forward/reverse bias) for each case.
b) Deduce and plot the VTC vo($\left.\mathrm{v}_{\mathrm{I}}\right)$.
c) Mark $v_{R}(t)$ on the circuit. Plot $v_{I}(t), v_{O}(t)$ and $v_{R}(t)$.
d) Compute vo and specify the states of both diodes for $\mathrm{v}_{\mathrm{I}}=-7.5 \mathrm{~V}$ and $\mathrm{v}_{\mathrm{I}}=7.5 \mathrm{~V}$.

e) Reverse the orientation of D. Draw the new circuit. Compute the new minimum and maximum values of the output voltage, for $\mathrm{v}_{\mathrm{I}}(\mathrm{t})=12 \sin \omega \mathrm{t}[\mathrm{V}]$.

P6.

Assume the constant voltage drop model for diodes, with $\mathrm{v}_{\mathrm{D}, \text { on }}=0.7 \mathrm{~V}$.
a) What is the expression $\mathrm{V}_{\mathrm{O}}\left(\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}}, \mathrm{V}_{\mathrm{S}}\right)$? What is the relation between $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}}, \mathrm{V}_{\mathrm{S}}$ to have $\mathrm{D}_{1}-\mathrm{on}$?
b) For $\mathrm{v}_{\mathrm{A}}=-5 \mathrm{~V}$ and $\mathrm{v}_{\mathrm{B}}=2 \mathrm{~V}$, determine V_{S} so that $\mathrm{v}_{\mathrm{O}}=4$ V. Specify the state of each diode (on/off). Justify your answer.
c) For $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}} \in\{0 \mathrm{~V}, 10 \mathrm{~V}\}$ and $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$, fill in the electric operating table of the circuit, including the states of the diodes (on/off), for every possible combination of values.
d) Size R so that io does not exceed 10 mA , for $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}} \in\{0$

$\mathrm{V}, 10 \mathrm{~V}\}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$. For what combination of values for v_{A}, v_{B} is the maximum io obtained?
What are the states of the diodes in this case?
e) $\operatorname{For} v_{A}(t)=-5 \sin \omega t[V], v_{B}(t)=10 \sin \omega t[V], V_{S}=3 V$, plot $v_{A}(t)$, $v_{B}(t), V_{S,} v_{O}(t)$, io (t).

P7.
Assume the constant voltage drop model for diodes, with
$\mathrm{V}_{\mathrm{D}, \text { on }}=0.7 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$.
a) What is the expression $\mathrm{vo}_{\mathrm{o}}\left(\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}}, \mathrm{V}_{\mathrm{S}}\right)$? What is the relation between v_{A}, $\mathrm{v}_{\mathrm{B}}, \mathrm{V}_{\mathrm{S}}$ to have $\mathrm{D}_{2}-\mathrm{on}$?
b) For $v_{A}=4 V, v_{B}=-3 V$, what is the value of v_{o} ? Specify the state of each diode (on/off). Justify your answer.
c) For $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}} \in\{0 \mathrm{~V}, 10 \mathrm{~V}\}$, fill in the electric operating table of the circuit, including the states of the diodes (on/off), for every possible combination of values.
d) Size R so that io does not exceed 10 mA , for v_{A}, $v_{B} \in\{0 \mathrm{~V}, 10 \mathrm{~V}\}$. For what combination of values for $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}}$ is the maximumio obtained? What are the
 states of the diodes in this case?
e) $\operatorname{For} v_{A}(t)=5 \sin \omega t[V], v_{B}(t)=-10 \sin \omega t[V]$, plot $v_{A}(t), v_{B}(t), v_{S}, v_{O}(t), i_{O}(t)$.

