CIRCUITS WITH D, ZD, LED

PREPARATION

To revisit:

- Diodes operating regions, states, diode's equations for the constant voltage drop model
- Zener diodes operating regions, states
- LEDs operating regions, difference between diodes and LEDs

P1.

Assume the constant voltage drop model for D, with $v_{D, on} = 0.7$ V, and R = 2 k Ω .

a) Deduce and plot the VTC $v_0(v_1)$ for $v_1 \in [-10, 10]$

[V]. What is the application of the circuit?

b) Plot $v_I(t)$ and $v_O(t)$ for $v_I(t) = 10 \sin \omega t$ [V]. Specify the state of the diode (on/off) on the plot.

c) Mark v_R on the circuit. Plot $v_I(t)$, $i_R(t)$ and $v_R(t)$.

d) Compute v_0 , v_R and i_R for $v_I = 5$ V. What is the state of D in this case? Justify your answer. **e**) Assume D is replaced with a resistor, R_1 , and $R_1 = R$. Find the new expression of $v_0(t)$. Draw $v_I(t)$ and $v_0(t)$ for $v_I(t) = 10 \sin \omega t$ [V].

P2.

Assume the constant voltage drop model for diodes, with $v_{D, on} = 0.7 \text{ V}$, and $v_I(t) = 7 \sin \omega t \text{ [V]}$.

a) Deduce the expression $v_O(v_I)$. What is the application of the circuit?

b) Plot $v_I(t)$ and $v_O(t)$. Specify the states of the diodes (on/off) on the plot.

c) Plot $v_I(t)$, $i_{D1}(t)$ and $i_{D4}(t)$.

d) What is the minimum amplitude of $v_I(t)$ for which $i_{D1}(t)$ and $i_{D4}(t)$ exist (are not zero)? Justify your answer.

e) Assume D_4 – open circuit. Redraw $v_I(t)$ and $v_O(t)$.

P3.

a) What are the minimum and maximum values of $v_0(t)$? Specify the operating region of the Zener diodes (forward/ reverse bias/ breakdown) for each case. b) Deduce and plot the VTC $v_0(v_1)$

b) Deduce and plot the VTC $v_O(v_I)$.

c) Mark $v_R(t)$ on the circuit. Plot $v_I(t)$, $v_O(t)$ and $v_R(t)$. d) Compute v_O and specify the states of both Zener diodes

for $v_I = -7$ V and $v_I = 5$ V.

e) Replace ZD2 with a regular diode. Draw the new circuit. Compute the new minimum and maximum values of the output voltage.

P4.

 $V_{Z1} = 5.4 \text{ V}, V_{Z1} = 8.2 \text{ V}, V_{D1,on} = V_{D2,on} = 0.7 \text{ V},$ $v_I(t) = 15 \text{sin}\omega t \text{ [V]}.$

a) What are the minimum and maximum values of $v_0(t)$? Specify the operating region of the Zener diodes (forward/reverse bias/breakdown) for each case.

b) Deduce and plot the VTC $v_O(v_I)$.

c) Mark $v_R(t)$ on the circuit. Plot $v_I(t)$, $v_O(t)$ and $v_R(t)$.

d) Compute v_0 and specify the states of both Zener diodes for $v_I = -7$ V and $v_I = 5$ V.

e) Reverse the orientation of ZD2. Draw the new circuit. Compute the new minimum and maximum values of the output voltage.

P5.

R = 1 kΩ, ZD8V2, $V_{ZD,on} = V_{D,on} = 0.7$ V, $v_I(t) = 12 \sin \omega t$ [V]. a) What are the minimum and maximum values of $v_O(t)$? Specify the states of D (on/off) and ZD (forward/reverse bias) for each case. b) Deduce and plot the VTC $v_O(v_I)$. c) Mark $v_R(t)$ on the circuit. Plot $v_I(t)$, $v_O(t)$ and $v_R(t)$.

d) Compute v_0 and specify the states of both diodes for $v_I = -7.5$ V and $v_I = 7.5$ V.

e) Reverse the orientation of D. Draw the new circuit. Compute the new minimum and maximum values of the output voltage, for $v_I(t) = 12 \sin \omega t [V]$.

P6.

Assume the constant voltage drop model for diodes, with $v_{D, on} = 0.7 \text{ V}$.

a) What is the expression $v_O(v_A, v_B, V_S)$? What is the relation between v_A, v_B, V_S to have $D_1 - on$?

b) For $v_A = -5$ V and $v_B = 2$ V, determine V_S so that $v_O = 4$ V. Specify the state of each diode (on/off). Justify your answer.

c) For v_A , $v_B \in \{0 V, 10 V\}$ and $V_S = 0 V$, fill in the electric operating table of the circuit, including the states of the diodes (on/off), for every possible combination of values.

d) Size R so that i_0 does not exceed 10 mA, for v_A , $v_B \in \{0\}$

V, 10 V} and V_S = 5 V. For what combination of values for v_A , v_B is the maximum i_O obtained? What are the states of the diodes in this case?

e) For $v_A(t) = -5\sin\omega t [V]$, $v_B(t) = 10\sin\omega t [V]$, $V_S = 3 V$, plot $v_A(t)$, $v_B(t)$, V_S , $v_O(t)$, $i_O(t)$.

P7.

Assume the constant voltage drop model for diodes, with

 $v_{D, on} = 0.7 V$, and $V_S = 10 V$.

a) What is the expression

 $v_O(v_A, v_B, V_S)$? What is the relation between v_A , v_B , V_S to have $D_2 - on$?

b) For $v_A = 4$ V, $v_B = -3$ V, what is the value of v_O ? Specify the state of each diode (on/off). Justify your answer.

c) For v_A , $v_B \in \{0 \ V, 10 \ V\}$, fill in the electric operating table of the circuit, including the states of the diodes (on/off), for every possible combination of values.

d) Size R so that i_0 does not exceed 10 mA, for v_A , $v_B \in \{0 \text{ V}, 10 \text{ V}\}$. For what combination of values for v_A , v_B is the maximum i_0 obtained? What are the states of the diodes in this case?

e) For $v_A(t) = 5 \sin \omega t [V]$, $v_B(t) = -10 \sin \omega t [V]$, plot $v_A(t)$, $v_B(t)$, V_S , $v_O(t)$, $i_O(t)$.

